Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Scanpy software processes huge amounts of single-cell data

12.02.2018

Scientists from the Helmholtz Zentrum München have developed a program that is able to help manage enormous datasets. The software, named Scanpy, is a candidate for analyzing the Human Cell Atlas, and has recently been published in ‘Genome Biology’.

“It’s about analyzing gene-expression data* of a large number of individual cells,” explains lead author Alex Wolf of the Institute of Computational Biology (ICB) at Helmholtz Zentrum München. He developed Scanpy together with his colleague Philipp Angerer in the Machine Learning Group of Prof. Dr. Dr. Fabian Theis. In addition to his position at Helmholtz Zentrum, Theis is also a professor of mathematical modelling of biological systems at the Technical University of Munich.


Visualization of gene expression patterns of murine brain cells generated with Scanpy

Source: Helmholtz Zentrum München

“New technical advances generate several orders of magnitude more data with a correspondingly greater information content,” Theis says. “However, the historically evolved software infrastructure for gene-expression analysis simply wasn’t designed to cope with the new challenges. New analytic methods are therefore needed.”

The race for the Human Cell Atlas

According to Theis, a major international research project could also benefit from the software. A team of international scientists is compiling a reference database, called the Human Cell Atlas, which holds data on the gene activity of all human cell types. “For this project, and in a growing number of other projects in which databases are combined, it is important to have scalable software,” says Theis. It is therefore no surprise that Scanpy is currently a candidate for helping to analyze the Human Cell Atlas (https://www.humancellatlas.org/).

“The publication of Scanpy marks the first software that allows comprehensive analysis of large gene-expression datasets with a broad range of machine-learning and statistical methods,” explains Wolf, describing the achievement. “The software is already being used by a number of groups around the world, notably at the Broad Institute of Harvard University and the Massachusetts Institute of Technology, MIT.”

Technologically, the application is a trailblazing development: Whereas biostatistics programs are traditionally written in the programming language R, Scanpy is based on the Python language, the dominant language in the machine learning community. Another new feature is that graph-based algorithms lie at the heart of Scanpy.

Unlike the usual approach of regarding cells as points in a coordinate system within gene-expression space, the algorithms use a graph-like coordinate system. Instead of characterizing a single cell by the expression value for thousands of genes, the system simply characterizes cells by identifying their closest neighbors – very much like the connections in social networks. In fact, to identify cell types, Scanpy uses the same algorithms as Facebook does for identifying communities.

Further information

* Expression describes how often a gene is read, i.e. it provides information on the gene’s activity.

Background:
Alex Wolf and his team have only recently occupied one of the top places in the Data Science Bowl, one of the world’s highest endowed competitions in the field of big data. For its entry, the team programmed an algorithm that can detect lung cancer within a few milliseconds on the basis of 300 layers of a three-dimensional CAT scan – a process that can take a radiologist, in the worst case, up to several hours.

In addition, the team has recently published an article in ‘Nature Communications’ on the reconstruction of cellular development processes from individual images: Paint by numbers: Algorithm reconstructs processes from individual images. https://www.helmholtz-muenchen.de/presse-medien/pressemitteilungen/alle-pressemi...

Original-Publikation:
Wolf, A. et al. (2018): Scanpy: large-scale single-cell gene expression data analysis. Genome Biology, DOI: 10.1186/s13059-017-1382-0

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Computational Biology (ICB) develops and applies methods for the model-based description of biological systems, using a data-driven approach by integrating information on multiple scales ranging from single-cell time series to large-scale omics. Given the fast technological advances in molecular biology, the aim is to provide and collaboratively apply innovative tools with experimental groups in order to jointly advance the understanding and treatment of common human diseases. http://www.helmholtz-muenchen.de/icb

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Dr. Alexander Wolf, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4217, E-mail: alex.wolf@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Biology Computational Biology Environmental Health Helmholtz diseases

More articles from Medical Engineering:

nachricht New technology: Edible QR code can be the medicine of the future
05.02.2018 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Novel chip-based gene expression tool analyzes RNA quickly and accurately
18.01.2018 | University of Illinois College of Engineering

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

Im Focus: Illinois researchers develop new surface design inspired by snake skin

Assistant Professor Seok Kim and graduate students Zining Yang and Jun Kyu Park have developed a design construct inspired in part by the surface of butterflies and snakes, where flexible skins are fully covered by rigid, discrete scales.

Their work, "Magnetically Responsive Elastomer-Silicon Hybrid Surfaces for Fluid and Light Manipulation," was recently featured on the cover of Small.

Im Focus: New Technique: Physicists generate terahertz waves with spin current flow

Terahertz waves are often used in the checking of passengers and luggage at the airport. They are also in demand in other areas, such as for materials testing in the industry. Physicists at the University of Kaiserslautern (TUK) have now developed a new method for generating such waves. They use a quantum magnetic current flow, so-called spin current, in magnetic metal nanostructures. The cost-effective and material-saving technology has the potential for industry applications. The study was published in the renowned scientific journal "Scientific Reports".

Terahertz (THz) waves lie in the electromagnetic spectrum between microwaves and infrared radiation. They are invisible to the human eye. Since they are low in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), 24 - 26 October, Call for Abstracts

07.02.2018 | Event News

Fraunhofer HHI presents the latest Li-Fi research at the first Global LiFi Congress in Paris

07.02.2018 | Event News

 
Latest News

The Scanpy software processes huge amounts of single-cell data

12.02.2018 | Medical Engineering

“Bethe Strings” experimentally demonstrated as many-body quantum states for the first time

12.02.2018 | Physics and Astronomy

Microscopic chariots deliver molecules within our cells

12.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>