Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology shows diabetes

23.01.2013
A new imaging method for the study of insulin-producing cells in diabetes among other uses is now being presented by a group of researchers at Umeå University in Sweden in the form of a video in the biomedical video journal, The Journal of Visualized Experiments.
The developed techniques have contributed to the reasons why the research team recently received a SEK 4.3 million grant from the EU in a Marie Curie program to link together leading research teams in Europe in the field of diabetes imaging.

Professor Ulf Ahlgren and his associates at the Umeå Center for Molecular Medicine (UCMM) have subsequently elaborated the technology for biomedical imaging with optical projection tomography (OPT). Initially the method could only be used on relatively small preparations, but five years ago the scientists at Umeå were able to adapt the technology to study whole organs including the pancreas from adult mice. The present findings describe a further development of the OPT technology by going from ordinary visible light to the near-infrared spectrum.
Near infrared light is light with longer wavelengths that can more easily penetrate tissue. Thereby, the developed imaging platform enables studies of considerably larger samples than was previously possible. This includes the rat pancreas, which is important because rats as laboratory animals are thought to be physiologically more similar to humans.

This adaptation, to be able to also image in near-infrared light, also means that the researchers gain access to a broader range of the light spectrum, making it possible to study more and different cell types in one organ preparation. In the article the scientists exemplify the possibility of simultaneously tracking the insulin-producing islets of Langerhans as well as the autoimmune infiltrating cells and the distribution of blood vessels in a model system for type-1 diabetes.

Internationally, huge resources are being committed to the development of non-invasive imaging methods for study of the number of remaining insulin cells in patients with developing diabetes. Such methods would be of great importance as only indirect methods for this exist today. However, a major problem in these research undertakings is to find suitable contrast agents that specifically bind to the insulin producing cells of the pancreas to allow imaging. In this context, the developed Near Infrared - OPT technology can play an important role as it enables the evaluation of new contrast agents. It may also be used as a tool to calibrate the non-invasive read out by e.g. magnetic resonance imaging (MRI). This is now going to be tested in the newly launched Marie Curie project “European Training Network for Excellence in Molecular Imaging in Diabetes,” which links together five major EU-funded research consortia with different cutting-edge competences in the field.

The study by scientists from Umeå is presented in the Journal of Visualized Experiments, which is the first scientific journal to offer the video format for publication in the life sciences. Visualization in video presentations clearly facilitates the understanding and description of complex experimental technologies. It can help address two major challenges facing bioscience research: the low transparency and poor reproducibility of biological experiments and the large amounts of time and work needed to learn new experimental technologies.

For more information, please contact:
Professor Ulf Ahlgren, Umeå Center for Molecular Medicine, Umeå University
Phone: +46 (0)90-785 44 34, E-mail: ulf.ahlgren@ucmm.umu.se

Other authors of the article are Christoffer Svensson, Anna Eriksson, Abbas Cheddad, Andreas Hörnblad, Maria Eriksson, Nils Norlin, Elena Kostromina, and Tomas Alanentalo, all at UCMM; Fredrik Georgsson at the Department of Computer Science; all with Umeå University, along with Antonello Pileggi, Miami University, Florida, and James Sharpe at CRG, Barcelona, Spain.

Figure 3: The enhanced technology allows new types of analyses, such as the possibility of evaluating preclinical samples for the purpose of developing better strategies for transplanting islets of Langerhans in diabetics. The image shows a liver from a mouse (gray) into which islets of Langerhans (blue) have been transplanted. By visualizing several markers in an organ it is possible to see directly where the islets of Langerhans wind up in the blood vessel tree. http://www.umu.se/digitalAssets/112/112854_ahlgren_opt_3.jpg

Hans Fällman | idw
Further information:
http://www.vr.se

More articles from Medical Engineering:

nachricht The intravenous swim team
28.07.2016 | Drexel University

nachricht MRI technique induces strong, enduring visual association
01.07.2016 | Brown University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Discovery of a novel gene for hereditary colon cancer

29.07.2016 | Health and Medicine

International team of scientists unveils fundamental properties of spin Seebeck effect

29.07.2016 | Physics and Astronomy

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>