Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique to see neurons of the deep brain for months at a time developed at Stanford

17.01.2011
Travel just one millimeter inside the brain and you'll be stepping into the dark.

Standard light microscopes don't allow researchers to look into the interior of the living brain, where memories are formed and diseases such as dementia and cancer can take their toll.

But Stanford scientists have devised a new method that not only lets them peer deep inside the brain to examine its neurons but also allows them to continue monitoring for months.

The technique promises to improve understanding of both the normal biology and diseased states of this hidden tissue.

Other recent advances in micro-optics had enabled scientists to take a peek at cells of the deep brain, but their observations captured only a momentary snapshot of the microscopic changes that occur over months and years with aging and illness.

The Stanford development appears online Jan. 16 in the journal Nature Medicine. It also will appear in the February 2011 print edition.

Scientists study many diseases of the deep brain using mouse models, mice that have been bred or genetically engineered to have diseases similar to human afflictions.

"Researchers will now be able to study mouse models in these deep areas in a way that wasn't available before," said senior author Mark Schnitzer, associate professor of biology and of applied physics.

Because light microscopy can only penetrate the outermost layer of tissues, any region of the brain deeper than 700 microns or so (about 1/32 of an inch) cannot be reached by traditional microscopy techniques. Recent advances in micro-optics had allowed scientists to briefly peer deeper into living tissues, but it was nearly impossible to return to the same location of the brain and it was very likely that the tissue of interest would become damaged or infected.

With the new method, "Imaging is possible over a very long time without damaging the region of interest," said Juergen Jung, operations manager of the Schnitzer lab. Tiny glass tubes, about half the width of a grain of rice, are carefully placed in the deep brain of an anaesthetized mouse. Once the tubes are in place, the brain is not exposed to the outside environment, thus preventing infection. When researchers want to examine the cells and their interactions at this site, they insert a tiny optical instrument called a microendoscope inside the glass guide tube. The guide tubes have glass windows at the ends through which scientists can examine the interior of the brain.

"It's a bit like looking through a porthole in a submarine," said Schnitzer.
The guide tubes allow researchers to return to exactly the same location of the deep brain repeatedly over weeks or months. While techniques like MRI scans could examine the deep brain, "they couldn't look at individual cells on a microscopic scale," said Schnitzer. Now, the delicate branches of neurons can be monitored during prolonged experiments.

To test the use of the technique for investigating brain disease, the researchers looked at a mouse model of glioma, a deadly form of brain cancer. They saw hallmarks of glioma growth in the deep brain that were previously known in tumors described as surficial (on or near the surface).

The severity of glioma tumors depends on their location. "The most aggressive brain tumors arise deep and not superficially," said Lawrence Recht, professor of neurology and neurological sciences. Why the position of glioma tumors affects their growth rate isn't understood, but this method would be a way to explore that question, Recht said.

In addition to continuing their studies of brain disease and the neuroscience of memory, the researchers hope to teach other researchers how to perform the technique.

The first three authors of the paper (all of whom contributed equally to the study) are Robert Barretto, a former doctoral student in biophysics and now a postdoctoral researcher at Columbia University Medical Center; Tony Ko, a former postdoctoral researcher in the Department of Biology; and Jung. Also contributing to the work – and listed as authors – are Tammy Wang, a former undergraduate in biomedical engineering; George Capps and Allison Waters, both former undergraduates in biology; and Yaniv Ziv and Alessio Attardo, both postdoctoral researchers in biology.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

Further reports about: MRI scan brain disease brain tumor deep brain mouse model

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>