Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technique increases detection rate in screening mammography

04.02.2014
Digital mammography screening with new photon-counting technique offers high diagnostic performance, according to a study published online in the journal Radiology.

As mammography screening has shifted to digital technology, a range of computed radiography (CR) and direct radiography (DR) systems have emerged. The photon-counting technique is a promising DR approach that uses a unique detector to decrease scattered radiation and noise, enabling dose reduction and making it a promising tool for screening.

"In population-based mammography screening, dose reducing techniques that don't compromise outcome parameters are desirable," said Walter Heindel, M.D., from the Department of Clinical Radiology at the University Hospital Muenster in Muenster, Germany.

For the study, Dr. Heindel and colleagues analyzed data from the mammography screening program in North Rhine-Westphalia, the most populous state in Germany. They compared the screening performance of a DR photon-counting scan system with those of statewide operating screening units using different digital technologies. During the study period (2009 – 2010), 13,312 women were examined using the photon-counting system, and 993,822 women were screened with either CR or DR systems alone.

The DR photon-counting scan system had a cancer detection rate of 0.76 percent for subsequent screening, compared with 0.59 percent for the other screening units. The recall rate was 5.4 percent for the photon-counting method and 3.4 percent for the other methods.

"The higher cancer detection resulting from the use of the DR photon-counting scan system is due to high detection of both small, invasive cancers and ductal carcinoma in situ," Dr. Heindel said.

The photon-counting technique had almost twice the detection rate of other methods for ductal carcinoma in situ (DCIS), an early, noninvasive form of disease. It had a higher DCIS detection rate than the statewide units and the conventional DR subgroup.

In addition, the mean average glandular radiation dose of the DR photon-counting scan system was significantly lower than the conventional DR systems with the individually used parameters of the automatic exposure control.

The study's large size distinguishes it from previous studies that compared the DR photon-counting scan system's performance with other approaches.

"To our knowledge, the study is different from previous ones as we examined the performance of the DR photon-counting scan mammography on a larger database with consideration of multiple parameters of screening," said study coauthor Stefanie Weigel, M.D., from the University Hospital Muenster.

The photon-counting technique also offers lateral dose modulation during the image acquisition, which can help account for differences in breast density. Cancer often is more difficult to detect in women with dense breasts.

"The innovative photon-counting technique offers further research potential," Dr. Heindel said. "One future research direction is the application of spectral imaging for quantification of breast glandular tissue, addressing the problem of breast density."

"Digital Mammography Screening with Photon-counting Technique: Can a High Diagnostic Performance Be Realized at Low Mean Glandular Dose?" Collaborating with Drs. Heindel and Weigel were Shoma Berkemeyer, Ph.D., Ralf Girnus, M.Sc., Alexander Sommer, M.Sc., and Horst Lenzen, M.Sc.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

For patient-friendly information on digital mammography, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org
http://www.eurekalert.org/pub_releases/2014-02/rson-nti012814.php

More articles from Medical Engineering:

nachricht Imaging probe yields double insight
05.08.2015 | The Agency for Science, Technology and Research (A*STAR)

nachricht Tiny mechanical wrist gives new dexterity to needlescopic surgery
24.07.2015 | Vanderbilt University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>