Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for deep brain stimulation surgery proves accurate and safe

06.06.2013
Surgery has been used for Parkinson’s disease and familial tremors, and also shows promise for other disorders

The surgeon who more than two decades ago pioneered deep brain stimulation surgery in the United States to treat people with Parkinson's disease and other movement disorders has now developed a new way to perform the surgery — which allows for more accurate placement of the brain electrodes and likely is safer for patients.

The success and safety of the new surgical technique could have broad implications for deep brain stimulation, or DBS, surgery into the future, as it may increasingly be used to help with a wide range of medical issues beyond Parkinson’s disease and familial tremors.

The new surgery also offers another distinct advantage: patients are asleep during the surgery, rather than being awake under local anesthesia to help surgeons determine placement of the electrodes as happens with the traditional DBS surgery.

A study detailing the new surgical technique is being published in the June 2013 edition of the Journal of Neurosurgery, and has been published online at the journal's website.

"I think this will be how DBS surgery will be done in most cases going forward," said Kim Burchiel, M.D., F.A.C.S., chair of neurological surgery at Oregon Health & Science University and the lead author of the Journal of Neurosurgery article. "This surgery allows for extremely accurate placement of the electrodes and it's safer. Plus patients don't need to be awake during this surgery -- which will mean many more patients who can be helped by this surgery will now be willing to consider it."

DBS surgery was first developed in France in 1987. Burchiel was the first surgeon in North America to perform the surgery, as part of a Food and Drug Administration-approved clinical trial in 1991.

The FDA approved the surgery for "essential tremor" in 1997 and for tremors associated with Parkinson's disease in 2002. The surgery has been performed tens of thousands of times over the last decade or so in the United States, most often for familial tremor and Parkinson's disease. Burchiel and his team at OHSU have performed the surgery more than 750 times.

The surgery involves implanting very thin wire electrodes in the brain, connected to something like a pacemaker implanted in the chest. The system then stimulates the brain to often significantly reduce the tremors.

For most of the last two decades, the DBS patient was required to be awake during surgery, to allow surgeons to determine through monitoring the patient’s symptoms and getting other conscious patient feedback whether the electrodes were placed in the right spots in the brain.

But the traditional form of the surgery had drawbacks. Many patients who might have benefitted weren't willing to undergo the sometimes 4 to 6 hour surgery while awake. There also is a small chance of hemorrhaging in the brain as the surgeon places or moves the electrodes to the right spot in the brain.

The new technique uses advances in brain imaging in recent years to place the electrodes more safely, and more accurately, than in traditional DBS surgery. The surgical team uses CT scanning during the surgery itself, along with an MRI of the patient's brain before the surgery, to precisely place the electrodes in the brain, while better ensuring no hemorrhaging or complications from the insertion of the electrode.

The Journal of Neurosurgery article reported on 60 patients who had the surgery at OHSU over an 18-month period beginning in early 2011.

"What our results say is that it's safe, that we had no hemorrhaging or complications at all — and the accuracy of the electrode placement is the best ever reported," Burchiel said.

Burchiel and his team have done another 140 or so surgeries with the new procedure since enrollment in the study ended. OHSU was the first center to pioneer the new DBS procedure, but other surgical teams across the U.S. are learning the technique at OHSU, and bringing it back to their own centers.

The positive results with the new DBS technique could have ramifications as medical researchers nationwide continue to explore possible new uses for DBS surgery. DBS surgery has shown promising results in clinical trials with some Alzheimer's patients, with some forms of depression and even with obesity.

If the early promising results for these conditions are confirmed, the number of people who might be candidates for DBS surgery could expand greatly, Burchiel said.

The length of the new surgery for the 60 patients involved in the study was slightly longer than traditional DBS surgery. But as Burchiel and his team have developed the new surgical technique, the new DBS surgeries are usually much shorter, often taking half the time of the more traditional approach. Given that, and that the electrodes are placed more accurately and the surgery is cheaper to perform, the new DBS surgery likely will be the technique most surgeons will use in coming years, Burchiel said.

DBS surgery often helps significantly reduce tremors in patients with familial tremor and tremors and other symptoms in Parkinson’s disease. A parallel study is ongoing at OHSU to assess how symptoms of the patients have improved since their DBS surgery using this new method.

Burchiel's co-authors on the Journal of Neurosurgery article were Ahmed Raslan, M.D., assistant professor of neurological surgery at OHSU, Shirley McCartney, Ph.D., assistant professor of neurological surgery at OHSU, and Albert Lee, M.S., M.D., a fellow in neurological surgery at OHSU.

About the OHSU Brain Institute

The Oregon Health & Science University Brain Institute is a national neuroscience leader in patient care, research and education. With more than 1,000 brain scientists and specialists, OHSU is home to one of the largest communities of brain and central nervous system experts in the nation. OHSU Brain Institute scientists have won national recognition for breaking new ground in understanding Alzheimer’s disease and for discoveries that have led to new treatments for Parkinson’s disease, multiple sclerosis, stroke and other brain disorders and diseases.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission. OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>