Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nine Teams Collaborate to Operate Multiple Biomedical Robots from Numerous Locations

21.09.2009
Using a new software protocol called the Interoperable Telesurgical Protocol, nine research teams from universities and research institutes around the world recently collaborated on the first successful demonstration of multiple biomedical robots operated from different locations in the U.S., Europe, and Asia. The University of Washington operated its Raven surgical robot and SRI International operated it M7 surgical robot for the demonstration.

In a 24-hour period, each participating group connected over the Internet and controlled robots at different locations. The tests demonstrated how a wide variety of robot and controller designs can seamlessly interoperate, allowing researchers to work together easily and more efficiently.

In addition, the demonstration evaluated the feasibility of robotic manipulation from multiple sites, and was conducted to measure time and performance for evaluating laparoscopic surgical skills.

The new protocol was cooperatively developed by the University of Washington and SRI International, to standardize the way remotely operated robots are managed over the Internet.

“Although many telemanipulation systems have common features, there is currently no accepted protocol for connecting these systems,” said SRI’s Tom Low. “We hope this new protocol serves as a starting point for the discussion and development of a robust and practical Internet-type standard that supports the interoperability of future robotic systems.”

The protocol will allow engineers and designers that usually develop technologies independently to work collaboratively, determine which designs work best, encourage widespread adoption of the new communications protocol, and help robotics research to evolve more rapidly. Early adoption of this protocol internationally will encourage robotic systems to be developed with interoperability in mind, and avoid future incompatibilities.

"We're very pleased with the success of the event in which almost all of the possible connections between operator stations and remote robots were successful. We were particularly excited that novel elements such as a simulated robot and an exoskeleton controller worked smoothly with the other remote manipulation systems," said UW professor of electrical engineering Blake Hannaford.

The demonstration included the following organizations:

• SRI International, Menlo Park, Calif., USA
• University of Washington Biorobotics Lab (BRL), Seattle, Washington, USA
• University of California at Santa Cruz (UCSC), Bionics Lab, Santa Cruz, Calif., USA
• iMedSim, Interactive Medical Simulation Laboratory, Rensselaer Polytechnic Institute, Troy, New York, USA
• Korea University of Technology (KUT) BioRobotics Lab, Cheonan, South Chungcheong, South Korea
• Imperial College London (ICL), London, England
• Johns Hopkins University (JHU), Baltimore, Maryland, USA
• Technische Universität München (TUM), Munich, Germany
• Tokyo Institute of Technology (TOK), Tokyo, Japan
For more information regarding availability of the Interoperable Telesurgical Protocol, please visit: http://brl.ee.washington.edu/Research_Active/Interoperability/

index.php/Main_Page

Hannah Hickey | Newswise Science News
Further information:
http://www.uw.edu

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>