Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system monitors fetal heartbeat

03.06.2009
Noninvasive technique could prevent complications

Tiny fluctuations in a fetus's heartbeat can indicate distress, but currently there is no way to detect such subtle variations except during labor, when it could be too late to prevent serious or even fatal complications.

Now, a new system developed by an MIT scientist and colleagues including an obstetrician could allow much earlier monitoring of the fetal heartbeat. The additional researchers are from the Institut National Polytechnique de Grenoble, Sharif University, Tufts Medical Center, and E-TROLZ Inc.

Among other advantages, the system is expected to be less expensive and easier to use than current technologies. It could also cut the rate of Cesarean deliveries by helping clinicians rule out potential problems that might otherwise prompt the procedure. Finally, the device used today to monitor subtle changes in the fetal heartbeat during labor must be attached to the fetus itself, but the new product would be noninvasive.

"Our objective is to make a monitoring system that's simultaneously cheaper and more effective" than what is currently available, said Gari Clifford, PhD, a principal research scientist at the Harvard-MIT Division of Health Sciences and Technology. Clifford expects that the system could be commercially available in two to three years pending FDA approval.

While only a minority of pregnancies suffer from fluctuations in the fetal heartbeat, the issue is nonetheless critical because those that do can result in bad outcomes. These problems include certain infections and a loss of oxygen to the baby if it is strangled by its own umbilical cord.

Two techniques

Doctors today actually have two ways to detect the fetal heartbeat.

Ultrasound, in which a doctor moves a device that looks roughly like a hockey puck over a woman's abdomen or she wears a belt fitted with sensors, can detect the heartbeat quite early in a pregnancy. However, it is not sensitive enough to catch variations in the rhythm that could indicate problems.

Electrocardiography (better known as ECG or EKG), which records the electrical activity of the heart, can indeed catch subtle changes in the fetal heartbeat. The problem: until now there has been no way to reliably use the technique to that end except by attaching an electrode to the baby's scalp during labor.

Doctors can monitor the fetal ECG signal noninvasively through electrodes on the mother's abdomen, but it is weak compared to the maternal heartbeat and surrounding noise. Further, it has not been possible to separate the three signals without distorting characteristics of the fetal heartbeat key to identifying potential clinical problems.

"The dominant signal turns out to be the mother's heartbeat, so teasing out a tiny fetal signal in the background noise without altering the clinical meaning of the fetal signal is a problem that has proved virtually insoluble," said Clifford.

The new system separates the maternal ECG signal from the fetus's and background noise thanks to a complex algorithm derived from the fields of signal processing and source separation. Together, these fields work to break any signal into its source components.

Clifford's principal colleagues on the signal-processing work include Dr. Reza Sameni (whose PhD work focused on this problem), Professor Christian Jutten of Institut National Polytechnique de Grenoble, and Professor Mohammad B. Shamsollahi of Sharif University. The researchers have described their approach in papers published in journals including the IEEE Transactions on Biomedical Engineering and the EURASIP Journal on Advances in Signal Processing.

To use the system, which the team believes could be deployed during the second trimester of pregnancy (around 20 weeks) and perhaps earlier, a woman would wear a wide belt around her abdomen fitted with several ECG electrodes. (The prototype has 32, but that number will be lower in the final device.) The data collected from those electrodes are then fed to a monitor and analyzed with the new algorithm, which in turn separates the different signals.

Multidimensional View

Clifford notes that "one of the nice things about monitoring the fetal ECG through the mother's abdomen is you're getting a multidimensional view of the fetal heart" because its electrical activity is recorded from many different angles. The single probe now used to monitor the heartbeat during labor gives data from only one direction.

"So with our system it's like going from a one-dimensional slice of an image to a hologram," Clifford said.

That better view could help catch problems that might have gone unnoticed before. "If you're looking in just one direction and an abnormality is occurring perpendicular to that direction, you won't see it," Clifford said.

The large amounts of 3-D data captured with the new system could also open up a new field of research: fetal electrocardiography. "The world of fetal ECG analysis is almost completely unexplored," Clifford said, because the current monitoring system can only be used during labor and "essentially gives only a monocular view."

Clifford's key collaborator on the clinical work is Dr. Adam Wolfberg, an obstetrician and a fellow in maternal fetal medicine at Tufts Medical Center. To validate the algorithm and build the system, he turned to E-TROLZ.

Recently, several patent applications on the work were licensed by MindChild Medical Inc.

The original development of the device was funded by the Center for Integration of Medicine and Innovative Technology (CIMIT).

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>