Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system monitors fetal heartbeat

03.06.2009
Noninvasive technique could prevent complications

Tiny fluctuations in a fetus's heartbeat can indicate distress, but currently there is no way to detect such subtle variations except during labor, when it could be too late to prevent serious or even fatal complications.

Now, a new system developed by an MIT scientist and colleagues including an obstetrician could allow much earlier monitoring of the fetal heartbeat. The additional researchers are from the Institut National Polytechnique de Grenoble, Sharif University, Tufts Medical Center, and E-TROLZ Inc.

Among other advantages, the system is expected to be less expensive and easier to use than current technologies. It could also cut the rate of Cesarean deliveries by helping clinicians rule out potential problems that might otherwise prompt the procedure. Finally, the device used today to monitor subtle changes in the fetal heartbeat during labor must be attached to the fetus itself, but the new product would be noninvasive.

"Our objective is to make a monitoring system that's simultaneously cheaper and more effective" than what is currently available, said Gari Clifford, PhD, a principal research scientist at the Harvard-MIT Division of Health Sciences and Technology. Clifford expects that the system could be commercially available in two to three years pending FDA approval.

While only a minority of pregnancies suffer from fluctuations in the fetal heartbeat, the issue is nonetheless critical because those that do can result in bad outcomes. These problems include certain infections and a loss of oxygen to the baby if it is strangled by its own umbilical cord.

Two techniques

Doctors today actually have two ways to detect the fetal heartbeat.

Ultrasound, in which a doctor moves a device that looks roughly like a hockey puck over a woman's abdomen or she wears a belt fitted with sensors, can detect the heartbeat quite early in a pregnancy. However, it is not sensitive enough to catch variations in the rhythm that could indicate problems.

Electrocardiography (better known as ECG or EKG), which records the electrical activity of the heart, can indeed catch subtle changes in the fetal heartbeat. The problem: until now there has been no way to reliably use the technique to that end except by attaching an electrode to the baby's scalp during labor.

Doctors can monitor the fetal ECG signal noninvasively through electrodes on the mother's abdomen, but it is weak compared to the maternal heartbeat and surrounding noise. Further, it has not been possible to separate the three signals without distorting characteristics of the fetal heartbeat key to identifying potential clinical problems.

"The dominant signal turns out to be the mother's heartbeat, so teasing out a tiny fetal signal in the background noise without altering the clinical meaning of the fetal signal is a problem that has proved virtually insoluble," said Clifford.

The new system separates the maternal ECG signal from the fetus's and background noise thanks to a complex algorithm derived from the fields of signal processing and source separation. Together, these fields work to break any signal into its source components.

Clifford's principal colleagues on the signal-processing work include Dr. Reza Sameni (whose PhD work focused on this problem), Professor Christian Jutten of Institut National Polytechnique de Grenoble, and Professor Mohammad B. Shamsollahi of Sharif University. The researchers have described their approach in papers published in journals including the IEEE Transactions on Biomedical Engineering and the EURASIP Journal on Advances in Signal Processing.

To use the system, which the team believes could be deployed during the second trimester of pregnancy (around 20 weeks) and perhaps earlier, a woman would wear a wide belt around her abdomen fitted with several ECG electrodes. (The prototype has 32, but that number will be lower in the final device.) The data collected from those electrodes are then fed to a monitor and analyzed with the new algorithm, which in turn separates the different signals.

Multidimensional View

Clifford notes that "one of the nice things about monitoring the fetal ECG through the mother's abdomen is you're getting a multidimensional view of the fetal heart" because its electrical activity is recorded from many different angles. The single probe now used to monitor the heartbeat during labor gives data from only one direction.

"So with our system it's like going from a one-dimensional slice of an image to a hologram," Clifford said.

That better view could help catch problems that might have gone unnoticed before. "If you're looking in just one direction and an abnormality is occurring perpendicular to that direction, you won't see it," Clifford said.

The large amounts of 3-D data captured with the new system could also open up a new field of research: fetal electrocardiography. "The world of fetal ECG analysis is almost completely unexplored," Clifford said, because the current monitoring system can only be used during labor and "essentially gives only a monocular view."

Clifford's key collaborator on the clinical work is Dr. Adam Wolfberg, an obstetrician and a fellow in maternal fetal medicine at Tufts Medical Center. To validate the algorithm and build the system, he turned to E-TROLZ.

Recently, several patent applications on the work were licensed by MindChild Medical Inc.

The original development of the device was funded by the Center for Integration of Medicine and Innovative Technology (CIMIT).

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Medical Engineering:

nachricht Surgery involving ultrasound energy found to treat high blood pressure
24.05.2018 | Queen Mary University of London

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>