Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New non-surgical autopsy technique set to revolutionise post-mortem practice

01.03.2011
Breakthrough science is cost-effective and easy to use
A new non-surgical post-mortem technique that has the potential to revolutionise the way autopsies are conducted around the world has been pioneered by forensic pathologists and radiologists at the University of Leicester in collaboration with the University Hospitals of Leicester NHS Trust.
 
The technique developed by a team in the East Midlands Forensic Pathology Unit, at the University of Leicester, has been published today (1 March) in International Journal of Legal Medicine. This paper presents the development of the methodology and protocol for this technique from independent research commissioned by the National Institute for Health Research (NIHR).
 
The study has taken another step towards a minimally invasive autopsy for natural and unnatural deaths, for either single cases or mass fatalities. It could also potentially allay qualms from certain faith groups that object to autopsies.
 
Professor Guy Rutty, Chief Forensic Pathologist to the East Midlands Forensic Pathology Unit, which is part of the Department of Cancer Studies and Molecular Medicine, University of Leicester, said the pilot study had demonstrated the potential of the technique to change the future of post-mortem procedures.
 
He said: “Autopsies are not popular with the general public and are viewed with great distaste.  There are a number of faith groups who voice objections to the autopsy. The development of a minimally invasive autopsy technique would reduce the overall number of invasive autopsies performed in the UK but would still provide a service to the Coroner and determine the cause of a person’s death. Currently, without the use of angiography, cardiac related death cannot be reliably diagnosed using a post mortem CT (Computed Tomography) scan so we needed to develop a system that could do this.”
 
“In collaboration with the radiology team, lead by Professor Bruno Morgan, we have successfully developed a quick and simple technique of ‘minimally invasive targeted coronary angiography’ where we inject contrast into the body of a deceased person through a small incision in the neck and then perform a full body CT scan. Using this method we are able to determine the cause of death in up to 80% of cases (in the series analysed to date).
 
“Basically, the technique is used to highlight and examine the vessels of the heart in people who have died. The technique is inexpensive, easy to use and applicable to natural and unnatural death, both single and mass fatalities.”
 
Professor Rutty explained the technique was novel because it uses catheterisation, contrast and imaging techniques that have not been reported previously. “Developing a new catheterisation system and using two different types of contrast to highlight the coronary vessels (air and standard coronary radio-opaque contrast media) sets us apart from other research groups,” he said.
 
Professor Rutty added:  “We were the first Unit in the world to our knowledge to propose targeted angiography as the way forward, and are now the first to describe the development, methodology and protocols involved for cadaver cardiac CT angiography.  Other groups have done whole body angiography which is time consuming and expensive and is unlikely to be implemented in the UK for everyday autopsies. 
 
“We are incredibly excited about the potential of this new research. This technique could see the beginning of a permanent change in autopsy practice in the UK, with fewer autopsies being performed.  This technique could be used in other centres across the world.”
 
The research paper presents the results from an initial pilot of 24 cases.  The University team will now complete a further 200 cases this year to further evaluate the technique and build a bigger evidence base.
 
For more information, contact:
 
Professor Guy N Rutty MBE
Chief Forensic Pathologist
East Midlands Forensic Pathology Unit
University of Leicester
Tel: 0044 116 252 3221
gnr3@le.ac.uk
 
 
1.         This paper presents independent research commissioned by the National Institute for Health Research (NIHR) under its Research for Innovation, Speculation and Creativity (RISC) Programme (Grant Reference Number RC-PG-0309-10052). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.
 
2.         The East Midlands Forensic Pathology Unit  wish to thank the relatives who consented for their recently departed loved ones to be part of this study. The team also wish to thank H.M.Coroner offices for North and South Leicestershire for their support of this project as well as the porters, radiographers and support staff of both the University Hospitals of Leicester and University of Leicester who support this project.
 
3.         The National Institute for Health Research (NIHR) provides the framework through which the research staff and research infrastructure of the NHS in England is positioned, maintained and managed as a national research facility. The NIHR provides the NHS with the support and infrastructure it needs to conduct first-class research funded by the Government and its partners alongside high-quality patient care, education and training. Its aim is to support outstanding individuals (both leaders and collaborators), working in world-class facilities (both NHS and university), conducting leading-edge research focused on the needs of patients. www.nihr.ac.uk
 
  
Press Office Contact
 
Ather Mirza
Press Office
Division of Corporate Affairs and Planning
University of Leicester
tel: 0116 252 3335
email: pressoffice@le.ac.uk

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>