Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New non-surgical autopsy technique set to revolutionise post-mortem practice

01.03.2011
Breakthrough science is cost-effective and easy to use
A new non-surgical post-mortem technique that has the potential to revolutionise the way autopsies are conducted around the world has been pioneered by forensic pathologists and radiologists at the University of Leicester in collaboration with the University Hospitals of Leicester NHS Trust.
 
The technique developed by a team in the East Midlands Forensic Pathology Unit, at the University of Leicester, has been published today (1 March) in International Journal of Legal Medicine. This paper presents the development of the methodology and protocol for this technique from independent research commissioned by the National Institute for Health Research (NIHR).
 
The study has taken another step towards a minimally invasive autopsy for natural and unnatural deaths, for either single cases or mass fatalities. It could also potentially allay qualms from certain faith groups that object to autopsies.
 
Professor Guy Rutty, Chief Forensic Pathologist to the East Midlands Forensic Pathology Unit, which is part of the Department of Cancer Studies and Molecular Medicine, University of Leicester, said the pilot study had demonstrated the potential of the technique to change the future of post-mortem procedures.
 
He said: “Autopsies are not popular with the general public and are viewed with great distaste.  There are a number of faith groups who voice objections to the autopsy. The development of a minimally invasive autopsy technique would reduce the overall number of invasive autopsies performed in the UK but would still provide a service to the Coroner and determine the cause of a person’s death. Currently, without the use of angiography, cardiac related death cannot be reliably diagnosed using a post mortem CT (Computed Tomography) scan so we needed to develop a system that could do this.”
 
“In collaboration with the radiology team, lead by Professor Bruno Morgan, we have successfully developed a quick and simple technique of ‘minimally invasive targeted coronary angiography’ where we inject contrast into the body of a deceased person through a small incision in the neck and then perform a full body CT scan. Using this method we are able to determine the cause of death in up to 80% of cases (in the series analysed to date).
 
“Basically, the technique is used to highlight and examine the vessels of the heart in people who have died. The technique is inexpensive, easy to use and applicable to natural and unnatural death, both single and mass fatalities.”
 
Professor Rutty explained the technique was novel because it uses catheterisation, contrast and imaging techniques that have not been reported previously. “Developing a new catheterisation system and using two different types of contrast to highlight the coronary vessels (air and standard coronary radio-opaque contrast media) sets us apart from other research groups,” he said.
 
Professor Rutty added:  “We were the first Unit in the world to our knowledge to propose targeted angiography as the way forward, and are now the first to describe the development, methodology and protocols involved for cadaver cardiac CT angiography.  Other groups have done whole body angiography which is time consuming and expensive and is unlikely to be implemented in the UK for everyday autopsies. 
 
“We are incredibly excited about the potential of this new research. This technique could see the beginning of a permanent change in autopsy practice in the UK, with fewer autopsies being performed.  This technique could be used in other centres across the world.”
 
The research paper presents the results from an initial pilot of 24 cases.  The University team will now complete a further 200 cases this year to further evaluate the technique and build a bigger evidence base.
 
For more information, contact:
 
Professor Guy N Rutty MBE
Chief Forensic Pathologist
East Midlands Forensic Pathology Unit
University of Leicester
Tel: 0044 116 252 3221
gnr3@le.ac.uk
 
 
1.         This paper presents independent research commissioned by the National Institute for Health Research (NIHR) under its Research for Innovation, Speculation and Creativity (RISC) Programme (Grant Reference Number RC-PG-0309-10052). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.
 
2.         The East Midlands Forensic Pathology Unit  wish to thank the relatives who consented for their recently departed loved ones to be part of this study. The team also wish to thank H.M.Coroner offices for North and South Leicestershire for their support of this project as well as the porters, radiographers and support staff of both the University Hospitals of Leicester and University of Leicester who support this project.
 
3.         The National Institute for Health Research (NIHR) provides the framework through which the research staff and research infrastructure of the NHS in England is positioned, maintained and managed as a national research facility. The NIHR provides the NHS with the support and infrastructure it needs to conduct first-class research funded by the Government and its partners alongside high-quality patient care, education and training. Its aim is to support outstanding individuals (both leaders and collaborators), working in world-class facilities (both NHS and university), conducting leading-edge research focused on the needs of patients. www.nihr.ac.uk
 
  
Press Office Contact
 
Ather Mirza
Press Office
Division of Corporate Affairs and Planning
University of Leicester
tel: 0116 252 3335
email: pressoffice@le.ac.uk

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk

More articles from Medical Engineering:

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

nachricht Pharmacoscpy: Next-Generation Microscopy
25.04.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>