Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-mini vehicles carry therapeutics and imaging agents into body with mega results

08.06.2011
Nanoscale, self assembly structures exploited for 21st century nanomedicine

Measured in billionths of a meter, self-assembling nano-sized devices designed to carry drugs and imaging agents into the body are revolutionizing medicine by improving drug solubility and bio-distribution, providing a platform for combining targeting and imaging agents, and enabling membrane barriers to be crossed as well as making drug and imaging agent combination therapies possible.

Self-assembling nano devices are now enlisted in the nanomedicine revolution, a story as told by researchers from Duke University and the University of Southern California in an article in the current TECHNOLOGY & INNOVATION, Proceedings of the National Academy of Inventors ™. (http://www.ingentaconnect.com/content/cog/ti/2011/00000013/00000001)

Their report covers two classes of self-assembled, nanoscale medical delivery devices currently used to transport drugs and also imaging materials across physiological barriers that they, acting by themselves, would be unable to cross.

"Nanoscale self-assembly devices are complex structures organized from simpler subcomponents - either naturally occurring or engineered - which assume complex structures difficult to attain by chemical synthesis," said the paper's corresponding author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "Their disassociation can be triggered by external stimuli, which serve as mechanisms to release therapeutic payloads."

According to Dr. Chilkoti and his co-authors, Dr. Mingan Chen and Jonathan R. McDaniel of the Duke University Department of Biomedical Engineering, as well as Dr. J. Andrew MacKay of the University of Southern California Department of Pharmacology and Pharmaceutical Sciences, many biological events rely on structures that self-assemble or disassemble based on environmental changes or physiological needs. Such natural self-assemblies used in nanomedicine rely on multiple weak forces, such as those associated with viral capsids and proteins.

Engineered self-assemblies used in nanomedicine come in over five groups of structural shapes, including the micellar nanostructure.

"We have recently developed a novel strategy that utilizes micelles self-assembled from recombinant polypeptides after attaching doxorubicin, a cancer drug, to deliver the drug," explained Dr. Chilkoti, who is also the director of the Duke University Center for Biologically Inspired Materials and Material Systems.

According to Dr. MacKay, a co-corresponding author of the report, the stability of micelles is important to their success or failure as drug delivery systems.

"The stability of micelles has thermodynamic and kinetic components," he said. "All factors that influence micellar stability can be tuned at the genetic level. Thus, we believe that genetically encoded polypeptide micelles are likely to play an increasing role in the design of next generation nanoscale carriers of drug and imaging agents."

In their report, the authors evaluate the structural and physiochemical properties, as well as the potential applications, of each type of structure.

The National Academy of Inventors ™ recognizes and encourages inventors who have a patent issued from the U.S. Patent and Trademark Office, enhances the visibility of university technology and academic innovation, encourages the disclosure of intellectual property, educates and mentors innovative students, and encourages the translation of the inventions of its members to benefit society.

The editorial offices of TECHNOLOGY and INNOVATION are located at the University of South Florida, Office of Research and Innovation, 3702 Spectrum Blvd., Suite 175, Tampa, Florida, 33612. Tel: (813) 974-3348. Email jlowry@research.usf.edu

News Release by Randolph Fillmore, Florida Science Communications, www.sciencescribe.net

Randolph Fillmore | EurekAlert!
Further information:
http://www.nasw.org

More articles from Medical Engineering:

nachricht 'Memtransistor' brings world closer to brain-like computing
22.02.2018 | Northwestern University

nachricht MRI technique differentiates benign breast lesions from malignancies
20.02.2018 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>