Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super-mini vehicles carry therapeutics and imaging agents into body with mega results

Nanoscale, self assembly structures exploited for 21st century nanomedicine

Measured in billionths of a meter, self-assembling nano-sized devices designed to carry drugs and imaging agents into the body are revolutionizing medicine by improving drug solubility and bio-distribution, providing a platform for combining targeting and imaging agents, and enabling membrane barriers to be crossed as well as making drug and imaging agent combination therapies possible.

Self-assembling nano devices are now enlisted in the nanomedicine revolution, a story as told by researchers from Duke University and the University of Southern California in an article in the current TECHNOLOGY & INNOVATION, Proceedings of the National Academy of Inventors ™. (

Their report covers two classes of self-assembled, nanoscale medical delivery devices currently used to transport drugs and also imaging materials across physiological barriers that they, acting by themselves, would be unable to cross.

"Nanoscale self-assembly devices are complex structures organized from simpler subcomponents - either naturally occurring or engineered - which assume complex structures difficult to attain by chemical synthesis," said the paper's corresponding author Dr. Ashutosh Chilkoti, professor of biomedical engineering at Duke University. "Their disassociation can be triggered by external stimuli, which serve as mechanisms to release therapeutic payloads."

According to Dr. Chilkoti and his co-authors, Dr. Mingan Chen and Jonathan R. McDaniel of the Duke University Department of Biomedical Engineering, as well as Dr. J. Andrew MacKay of the University of Southern California Department of Pharmacology and Pharmaceutical Sciences, many biological events rely on structures that self-assemble or disassemble based on environmental changes or physiological needs. Such natural self-assemblies used in nanomedicine rely on multiple weak forces, such as those associated with viral capsids and proteins.

Engineered self-assemblies used in nanomedicine come in over five groups of structural shapes, including the micellar nanostructure.

"We have recently developed a novel strategy that utilizes micelles self-assembled from recombinant polypeptides after attaching doxorubicin, a cancer drug, to deliver the drug," explained Dr. Chilkoti, who is also the director of the Duke University Center for Biologically Inspired Materials and Material Systems.

According to Dr. MacKay, a co-corresponding author of the report, the stability of micelles is important to their success or failure as drug delivery systems.

"The stability of micelles has thermodynamic and kinetic components," he said. "All factors that influence micellar stability can be tuned at the genetic level. Thus, we believe that genetically encoded polypeptide micelles are likely to play an increasing role in the design of next generation nanoscale carriers of drug and imaging agents."

In their report, the authors evaluate the structural and physiochemical properties, as well as the potential applications, of each type of structure.

The National Academy of Inventors ™ recognizes and encourages inventors who have a patent issued from the U.S. Patent and Trademark Office, enhances the visibility of university technology and academic innovation, encourages the disclosure of intellectual property, educates and mentors innovative students, and encourages the translation of the inventions of its members to benefit society.

The editorial offices of TECHNOLOGY and INNOVATION are located at the University of South Florida, Office of Research and Innovation, 3702 Spectrum Blvd., Suite 175, Tampa, Florida, 33612. Tel: (813) 974-3348. Email

News Release by Randolph Fillmore, Florida Science Communications,

Randolph Fillmore | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>