Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Potential Breakthrough in Hearing Technology

19.11.2013
Computer processes sound, filters out background noise for the hearing-impaired

Computer engineers and hearing scientists at The Ohio State University have made a potential breakthrough in solving a 50-year-old problem in hearing technology: how to help the hearing-impaired understand speech in the midst of background noise.

In the Journal of the Acoustical Society of America, they describe how they used the latest developments in neural networks to boost test subjects’ recognition of spoken words from as low as 10 percent to as high as 90 percent.

The researchers hope the technology will pave the way for next-generation digital hearing aids. Such hearing aids could even reside inside smartphones; the phones would do the computer processing, and broadcast the enhanced signal to ultra-small earpieces wirelessly.

Several patents are pending on the technology, and the researchers are working with leading hearing aid manufacturer Starkey, as well as others around the world to develop the technology.

Conquering background noise has been a “holy grail” in hearing technology for half a century, explained Eric Healy, professor of speech and hearing science

and director of Ohio State’s Speech Psychoacoustics Laboratory.

The desire to understand one voice in roomful of chatter has been dubbed the “cocktail party problem.”

“Focusing on what one person is saying and ignoring the rest is something that normal-hearing listeners are very good at, and hearing-impaired listeners are very bad at,” Healy said. “We’ve come up with a way to do the job for them, and make their limitations moot.”

Key to the technology is a computer algorithm developed by DeLiang “Leon” Wang, professor of computer science and engineering, and his team. It quickly analyzes speech and removes most of the background noise.

“For 50 years, researchers have tried to pull out the speech from the background noise. That hasn’t worked, so we decided to try a very different approach: classify the noisy speech and retain only the parts where speech dominates the noise,” Wang said.

In initial tests, Healy and doctoral student Sarah Yoho removed twelve hearing-impaired volunteers’ hearing aids, then played recordings of speech obscured by background noise over headphones. They asked the participants to repeat the words they heard. Then they re-performed the same test, after processing the recordings with the algorithm to remove background noise.

They tested the algorithm’s effectiveness against “stationary noise”—a constant noise like the hum of an air conditioner—and then with the babble of other voices in the background.

The algorithm was particularly affective against background babble, improving hearing-impaired people’s comprehension from 25 percent to close to 85 percent on average. Against stationary noise, the algorithm improved comprehension from an average of 35 percent to 85 percent.

For comparison, the researchers repeated the test with twelve undergraduate Ohio State students who were not hearing-impaired. They found that scores for the normal-hearing listeners without the aid of the algorithm’s processing were lower than those for the hearing-impaired listeners with processing.

“That means that hearing-impaired people who had the benefit of this algorithm could hear better than students with no hearing loss,” Healy said.

A new $1.8 million grant from the National Institutes of Health will support the research team’s refinement of the algorithm and testing on human volunteers.

The algorithm is unique, Wang said, because it utilizes a technique called machine learning. He and doctoral student Yuxuan Wang are training the algorithm to separate speech by exposing it to different words in the midst of background noise. They use a special type of neural network called a “deep neural network” to do the processing—so named because its learning is performed through a deep layered structure inspired by the human brain.

These initial tests focused on pre-recorded sounds. In the future, the researchers will refine the algorithm to make it better able to process speech in real time. They also believe that, as hearing aid electronics continue to shrink and smartphones become even more common, phones will have more than enough processing power to run the algorithm and transmit sounds instantly—and wirelessly—to the listener’s ears.

Some 10 percent of the population—700 million people worldwide—suffer from hearing loss. The problem increases with age. In a 2006 study, Healy determined that around 40 percent of people in their 80s experience hearing loss that is severe enough to make others’ speech at least partially unintelligible.

One of them is Wang’s mother, who, like most people with her condition, has difficulty filtering out background noise.

“She’s been one of my primary motivations,” Wang said. “When I go visit her, she insists that only one person at a time talk at the dinner table. If more than one person talks at the same time, she goes absolutely bananas because she just can’t understand. She’s tried all sorts of hearing aids, and none of them works for this problem.”

“This is the first time anyone in the entire field has demonstrated a solution,” he continued. “We believe that this is a breakthrough in the true sense of the word.”

The technology is currently being commercialized and is available for license from Ohio State’s Technology Commercialization and Knowledge Transfer Office.

Contacts: Eric Healy, (614) 292-8973; Healy.66@osu.edu
Leon Wang, (614) 292-6827; Wang.77@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor's note: Audio files are available to accompany the story.

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Medical Engineering:

nachricht Heart examinations: Miniature particle accelerator saves on contrast agents
27.02.2017 | Technische Universität München

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>