Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Reveals Potential Breakthrough in Hearing Technology

19.11.2013
Computer processes sound, filters out background noise for the hearing-impaired

Computer engineers and hearing scientists at The Ohio State University have made a potential breakthrough in solving a 50-year-old problem in hearing technology: how to help the hearing-impaired understand speech in the midst of background noise.

In the Journal of the Acoustical Society of America, they describe how they used the latest developments in neural networks to boost test subjects’ recognition of spoken words from as low as 10 percent to as high as 90 percent.

The researchers hope the technology will pave the way for next-generation digital hearing aids. Such hearing aids could even reside inside smartphones; the phones would do the computer processing, and broadcast the enhanced signal to ultra-small earpieces wirelessly.

Several patents are pending on the technology, and the researchers are working with leading hearing aid manufacturer Starkey, as well as others around the world to develop the technology.

Conquering background noise has been a “holy grail” in hearing technology for half a century, explained Eric Healy, professor of speech and hearing science

and director of Ohio State’s Speech Psychoacoustics Laboratory.

The desire to understand one voice in roomful of chatter has been dubbed the “cocktail party problem.”

“Focusing on what one person is saying and ignoring the rest is something that normal-hearing listeners are very good at, and hearing-impaired listeners are very bad at,” Healy said. “We’ve come up with a way to do the job for them, and make their limitations moot.”

Key to the technology is a computer algorithm developed by DeLiang “Leon” Wang, professor of computer science and engineering, and his team. It quickly analyzes speech and removes most of the background noise.

“For 50 years, researchers have tried to pull out the speech from the background noise. That hasn’t worked, so we decided to try a very different approach: classify the noisy speech and retain only the parts where speech dominates the noise,” Wang said.

In initial tests, Healy and doctoral student Sarah Yoho removed twelve hearing-impaired volunteers’ hearing aids, then played recordings of speech obscured by background noise over headphones. They asked the participants to repeat the words they heard. Then they re-performed the same test, after processing the recordings with the algorithm to remove background noise.

They tested the algorithm’s effectiveness against “stationary noise”—a constant noise like the hum of an air conditioner—and then with the babble of other voices in the background.

The algorithm was particularly affective against background babble, improving hearing-impaired people’s comprehension from 25 percent to close to 85 percent on average. Against stationary noise, the algorithm improved comprehension from an average of 35 percent to 85 percent.

For comparison, the researchers repeated the test with twelve undergraduate Ohio State students who were not hearing-impaired. They found that scores for the normal-hearing listeners without the aid of the algorithm’s processing were lower than those for the hearing-impaired listeners with processing.

“That means that hearing-impaired people who had the benefit of this algorithm could hear better than students with no hearing loss,” Healy said.

A new $1.8 million grant from the National Institutes of Health will support the research team’s refinement of the algorithm and testing on human volunteers.

The algorithm is unique, Wang said, because it utilizes a technique called machine learning. He and doctoral student Yuxuan Wang are training the algorithm to separate speech by exposing it to different words in the midst of background noise. They use a special type of neural network called a “deep neural network” to do the processing—so named because its learning is performed through a deep layered structure inspired by the human brain.

These initial tests focused on pre-recorded sounds. In the future, the researchers will refine the algorithm to make it better able to process speech in real time. They also believe that, as hearing aid electronics continue to shrink and smartphones become even more common, phones will have more than enough processing power to run the algorithm and transmit sounds instantly—and wirelessly—to the listener’s ears.

Some 10 percent of the population—700 million people worldwide—suffer from hearing loss. The problem increases with age. In a 2006 study, Healy determined that around 40 percent of people in their 80s experience hearing loss that is severe enough to make others’ speech at least partially unintelligible.

One of them is Wang’s mother, who, like most people with her condition, has difficulty filtering out background noise.

“She’s been one of my primary motivations,” Wang said. “When I go visit her, she insists that only one person at a time talk at the dinner table. If more than one person talks at the same time, she goes absolutely bananas because she just can’t understand. She’s tried all sorts of hearing aids, and none of them works for this problem.”

“This is the first time anyone in the entire field has demonstrated a solution,” he continued. “We believe that this is a breakthrough in the true sense of the word.”

The technology is currently being commercialized and is available for license from Ohio State’s Technology Commercialization and Knowledge Transfer Office.

Contacts: Eric Healy, (614) 292-8973; Healy.66@osu.edu
Leon Wang, (614) 292-6827; Wang.77@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Editor's note: Audio files are available to accompany the story.

Pam Frost Gorder | Newswise
Further information:
http://www.osu.edu

More articles from Medical Engineering:

nachricht Self-powered paper-based 'SPEDs' may lead to new medical-diagnostic tools
23.08.2017 | Purdue University

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>