Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong magnetic fields for new insights into the brain

16.05.2011
Siemens will install three powerful, high-field magnetic resonance tomographs (MRT) at the University of Maastricht, and thus provide entirely new insights into the human brain.

The MRTs are to be dedicated to the renowned research project Brains Unlimited, whose objective is to further investigate how the human brain functions. Siemens delivers one of the worldwide most powerful MRT systems with a magnetic field strength of 9.4 Tesla*, as well as two systems with three and seven* Tesla, respectively.


Currently, Siemens is the only company capable of supplying a 9.4 Tesla* MRT system for human research. Its magnetic field is nearly 200,000 times stronger than that of the earth and it is significantly more powerful than the 1.5 Tesla of standard MRT devices for clinical routine. The ultra-high-field system helps research scientists to detect much more details from inside the human body and identify brain structures and functions that exist on a microscopic scale.

Using these research studies, scientists hope to obtain greater insight into the causes of serious illnesses such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, and into the growth of tumors. In addition, the causes of behavioral changes, disorders such as difficulties in reading and writing (dyslexia), and attention deficit hyperactivity disorder (ADHD-ADD) will be investigated. Among further research projects, the university plans to use the systems to investigate how the structure of musicians’ ears differs from that of other people.

... more about:
»Brain »M-BIC »MRT »Tesla »brain structure »magnetic field

The order was one of the largest of this type in the history of Siemens Healthcare in the Netherlands and includes the construction of a special building to accommodate the three MRT systems. The Brains Unlimited project is an initiative from the M-BIC (Maastricht Brain Imaging Center). The M-BIC is part of the Faculty of Psychology and Neuroscience and works closely together with brain scientists at Maastricht University Medical Center. Brains Unlimited is funded by the European Union, the Province of Limburg, and the Municipality of Maastricht. * CAUTION – Investigational Device. Limited by Federal law to investigational use.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/researchnews

Further reports about: Brain M-BIC MRT Tesla brain structure magnetic field

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>