Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretchable Balloon Electronics Get to the Heart of Cardiac Medicine

07.03.2011
Cardiologists may soon be able to place sensitive electronics inside their patients’ hearts with minimal invasiveness, enabling more sophisticated and efficient diagnosis and treatment of arrhythmias.

A team of materials scientists, mechanical and electrical engineers, and physicians has successfully integrated stretchable electronics technology with standard endocardial balloon catheters. Led by John A. Rogers, the Lee J. Flory-Founder Chair in Engineering at Illinois, the team will publish its work in the March 6 online edition of Nature Materials.

The team previously demonstrated a sensor-laden sheet that could laminate to the surface of the heart in 2010. Now they have expanded their technology to endocardial balloon catheters, one of the most common, least-invasive devices for cardiac procedures.

Catheters are long, flexible tubes that can be threaded through a vein or artery to reach the inside of the heart. Catheters with balloons at the end are commonly used for angioplasty, stent placement and other procedures as passive mechanical instruments. When in place, the balloon inflates and gently presses against the surrounding tissue to open blood vessels or valves.

Invasive cardiologists specializing in heart rhythm disorders use catheters with electrodes at the end for detecting and mapping arrhythmias and for ablation, or selectively killing small patches of cells that beat off-rhythm. Current invasive arrhythmia procedures involve two separate, rigid catheter devices: one that maps the heart point-by-point as a cardiologist maneuvers the tube in search of irregularities, and one with an electrode at the end that ablates spots identified as aberrant, one at a time.

The balloon device Rogers’ team developed can perform both functions over large areas of the heart simultaneously, using integrated arrays of multifunctional sensors and ablation electrodes.

“It’s all in one, so it maps and zaps,” said Rogers, a professor of materials science and engineering. “The idea here is instead of this single-point mapping and separate single-point zapping catheter, have a balloon that offers all that functionality, in a mode that can do spatial mapping in a single step. You just inflate it right into the cavity and softly push all of that electronics and functionality against the tissue.”

The researchers created a meshwork of tiny sensor nodes that could mount directly onto a conventional catheter balloon. The device holds an array of sensors to measure electrical activity of the cardiac muscle, temperature, blood flow, and pressure as the balloon presses against the tissue, along with electrodes for ablation. The entire system is designed to operate reliably as the balloon inflates and deflates.

“It demands all the features and capabilities that we’ve developed in stretchable electronics over the years in a pretty aggressive way,” Rogers says. “It also really exercises the technology in an extreme, and useful, manner – we put everything on the soft surface of a rubber balloon and blow it up without any of the devices failing.”

The Illinois team collaborated with cardiologists at the University of Arizona and Massachusetts General Hospital (MGH) to determine what types of features would be most useful for patient care.

For example, the researchers added temperature sensors and mapped temperature distribution on actual tissue as areas were ablated. From this data they developed a model to predict temperature distribution so cardiologists know how deep into the tissue they are ablating.

“Adding a feature such as temperature detection and distribution gives us greater insight as to what we are actually doing to the tissue,” said co-author Dr. Marvin J. Slepian, a practicing cardiologist and a professor of medicine at the Scarver Heart Center of the University of Arizona. “This will enhance the safety and effectiveness of ablation catheters, providing a new level of precision that we have not had to date, while simultaneously shortening the length of procedure times, which is an overall ‘win’ for patients, physicians and hospitals.”

Rogers’ team also worked closely with mc10, a company he co-founded that is commercializing the underlying technology for both medical and non-medical applications. Several researchers at mc10 are co-authors of the paper. The company has tested the devices in live animal experiments with medical collaborators at Arizona and MGH.

The biggest challenge for the researchers was ensuring full functionality of the electronics at all levels of balloon inflation. Since the center of the balloon stretches more than the ends, they had to figure out the range of strain the sensors would encounter and how to accommodate it so that sensors at the most strained points would function the same as those at areas of lower strain.

Through a collaboration with researchers at Northwestern University, led by Younggang Huang, the team solved this problem by mounting the sensors and electrodes on tiny rigid islands so they wouldn’t be affected by the balloon stretching. They also used spring-like interconnects between the sensors to handle the 100 percent distance increase between the islands when the balloon inflates.

The fabrication techniques the engineers used in developing the balloon device could be exploited for integrating many classes of advanced semiconductor devices on a variety of surgical instruments. For example, the team also demonstrated surgical gloves with sensor arrays mounted on the fingertips to show that the electronics could be applied to other biomedical platforms.

Next, Rogers would like to further increase the density of sensors on the balloon, up to thousands of tiny, multiplexed devices on the surface. This design would enable the integration of sophisticated electronic systems with the capability for even greater resolution for mapping and the ability to ablate the minimal amount of tissue. He also plans to continue exploring medical device applications for stretchable, flexible electronic arrays in other surgical tools.

“Being able to embed these kinds of advanced semiconductor devices into tissue-like formats creates all kinds of new ways to do minimally invasive procedures,” Rogers said. “I’m hopeful that this will be the first of many devices that collectively can have a major impact on the way human health care is done.”

This work was supported by the National Science Foundation and the Department of Energy. The authors will present related findings at the Heart Rhythm Society Meeting in San Francisco in May.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>