Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

State's first single incision robotic kidney removal

27.08.2008
For the first time in Michigan, a diseased kidney has been surgically removed at Henry Ford Hospital using highly sophisticated 3D robotics through a single incision.

"We made several improvements in the technique that could allow us to perform this type of procedure routinely," says Craig Rogers, M.D., Henry Ford's director of robotic renal surgery. He performed the delicate operation last week using the da Vinci Surgical System, which has already been used in thousands of successful surgeries for complete and partial removal of diseased prostates.

The kidney, damaged by four tumors, was extracted through an incision of about three inches near the patient's navel of a 50-year-old patient during a complex minimally invasive robotic procedure that lasted approximately 2.5 hours.

The procedure takes its name in part from its minimally invasive approach: SIRS or Single Incision Robotic Surgery.

"We traditionally try to save the kidney for smaller tumors, performing a robotic partial nephrectomy", says Dr. Rogers. "For larger tumors, however, patients would get a very large incision on their side. Now, we can remove kidneys with cancer through a single three- inch incision near the patient's belly button."

The potential benefits to performing the SIRS nephrectomy are improved cosmetics, quicker recovery times, less scarring and blood loss.

Dr. Rogers and his colleagues have also pioneered robotic surgery for smaller kidney tumors, allowing them to perform a partial nephrectomy to remove tumors that might otherwise require total kidney removal or a large open incision. While these procedures are considered revolutionary because they preserve the healthy portion of the kidney and shorten recovery time, they are not practical for patients with large tumors.

"I think this is going to be a big advance for having to remove the entire kidney because of large kidney tumors. This could be a great improvement over traditional open and laparoscopic surgeries." Henry Ford doctors have performed more than 130 robotic kidney surgeries using four or five incisions of less than one inch. When Henry Ford doctors perform robotic surgery with the da Vinci system, a camera and small robotic instruments are inserted through small incisions and controlled by the surgeon from a nearby console machine.

In the SIRS procedure, Dr. Rogers inserts the robotic arms through a single incision near the belly button, and sits at a nearby machine controlling the robot throughout the operation.

"I control every movement made by the robotic arms," says Dr. Rogers. "The robotic instruments are like having my hands inside the body."

Working through the single small incision, the robot-assisted surgeon inflates the abdomen; moves the large intestine aside to reach the kidney; clips or ties off the vein and artery that take blood to and from the kidney; detaches the rest of the kidney, and removes it.

Kidney cancer is diagnosed in approximately 55,000 people a year and the most common treatment option is an open surgery with a large incision about a foot long. Surgeons sometimes must remove a rib, and they must go through muscle to remove the kidney. Recovery can be up to two months with a weeklong hospital stay.

Besides cancer patients, candidates for SIRS nephrectomy include those with nonfunctioning kidneys due to blockage, stones, or congenital abnormalities.

This week's innovative and successful kidney procedure comes after Henry Ford has established itself as the leading facility worldwide for robot-assisted surgical treatment of prostate cancer. More than 4,000 such procedures have been performed by Henry Ford surgeons since 2001.

"We think we'll see the same advantages with robotic kidney surgery as we have with robotic prostatectomy," says Dr. Rogers.

Dwight Angell | EurekAlert!
Further information:
http://www.hfhs.org

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>