Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start-up markets artificial cell membranes that can speed up drug discovery

21.01.2014
ACM Biolabs, a spin-off company from A*STAR’s Institute of Materials Research and Engineering (IMRE), will market novel plastic cell membranes to be used as low-cost, easily maintained drug targets that may help shorten the drug discovery process by weeks or months and cut cost by two-thirds.

ACM Biolabs, a spin-off company from A*STAR’s Institute of Materials Research and Engineering (IMRE), will market novel plastic cell membranes to be used as low-cost, easily maintained drug targets that help shorten the drug discovery process.


How artificial cell membranes are created - Schematic showing how the artificial cell membranes are formed and their advantages over existing live cell culture methods.

What usually takes weeks or even months can now be done in a matter of days using these new materials. Combined with a robust scalability to large scale quantities, ACM’s artificial cell membranes may cut costs in the initial phase of drug discovery by up to two-thirds.

1. Artificial cell membranes (ACMs) are customised synthetic cell membranes that mimic live, targeted membrane proteins. The new technology allows the production of membrane proteins without the need for the specially controlled environments, conditions and training that is required in current live cell culture laboratories. ACM Biolabs’ products, which can be tailor-made to a pharmaceutical company’s specific drug testing requirements, are produced rapidly and are stable over a long period, leading to significantly reduced costs and streamlining of the currently tedious and cumbersome drug discovery process. The patented artificial cell membrane technology was first developed at A*STAR’s IMRE in 2009 by integrating biology with innovative materials science know-how and is now licensed to ACM Biolabs.

2. Cells communicate with each other and exchange vital molecules through their ‘skin’ or membranes, facilitated by specific proteins, or membrane proteins. Disruption of the communication pattern can lead to diseases such as cancer, diabetes, obesity, and Parkinson’s Disease. Understanding the working of membrane proteins is critical in creating medicines to combat diseases. ACM Biolabs has adapted natural cellular processes to invent a simple yet functional system, where synthetic materials are engineered to host membrane proteins. These include some membrane proteins that cannot currently be produced in a stable form using today’s cell-based technology, i.e. the so-called ‘hard targets’.

3. “Our proprietary artificial cell membrane technology is a unique combination of engineered polymer materials and biology that gives pharmaceutical companies a faster, cheaper alternative to current drug discovery methods,” said Dr Madhavan Nallani, a former IMRE scientist who is the founder and now the Director of ACM Biolabs, which produces these patented artificial cell membranes with customised membrane proteins.

4. “Our aim is to lower the entry barrier for more companies and labs to screen novel drugs, or test existing drugs on novel targets”, added Dr Nallani. “ACM Biolabs believes that our product can reduce the risk from some of the more daunting phases in the drug discovery process and allows the creation of a new generation of innovative drugs.”

5. “The commercialisation of this technology is an excellent example of A*STAR’s plan to push lab-based research into the marketplace,” said Prof Andy Hor, Executive Director of IMRE. “The success of this spin-off is also part of our efforts to create a generation of scientist-entrepreneurs that can help lead Singapore’s charge in a future knowledge-based economy”.

6. ACM Biolabs targets the drug discovery industry, especially the life science tools market, which is worth an estimated US$42 billion currently. Its technology will significantly impact the membrane protein related assays in the cell biology sector, which accounts for a third of the life science tools industry revenue and is expected to reach US$15 billion by 2015. The market potential is huge, especially for disruptive technologies like Artificial Cell Membranes, since the majority of known membrane proteins have yet to be explored as drug targets partly due to the difficulties in studying them in live cells. This serves as a validation for the company’s technology and also grows the company’s acceptance as a market provider of products and partner for expertise in membrane protein targets.

7. The award-winning Artificial Cell Membrane technology was first recognised as a finalist in the prestigious Asian Innovation Awards 2011 organised by The Wall Street Journal Asia. ACM Biolabs went on to win the “Most Innovative Start-up” award for its potential application in membrane protein drug screening analysis at the Action Community for Entrepreneurship (ACE)-ETPL Investor Forum held in June 2012. ACM Biolabs has also recently secured a SPRING Technology Enterprise Commercialisation Scheme (TECS) Proof-of-Value grant worth S$500,000 to help grow the start-up.

For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Madhavan Nallani
Director
ACM Biolabs Pte Ltd.,
50 Nanyang Drive, Research Techno Plaza, XFrontier Block 6,
Singapore 637553
DID +65 65927946
Email mnallani@acmbiolabs.com
Annex A – ACM Biolabs and A*STAR Corporate Profiles
About ACM Biolabs
ACM Biolabs is a biotech startup, with its main office and R&D lab in Singapore. Our company uses the artificial cell membrane (ACM) platform to produce tailor-made products and programs centered around 'hard targets' in drug discovery. Typically, these are membrane protein targets that cannot be reliably produced using cell-lines. The mission of ACM Biolabs is to de-risk early stage drug discovery by significantly lowering the costs and time required for drug and antibody screening. Our area of expertise is focused on developing of new screening technologies using properties unique to the ACM matrix. ACM technology is also used in industry-standard assays and enables high-throughput screening at a scale not achievable by current platforms. For more information, please visit www.acmbiolabs.com/home.html.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg.

About Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht A Challenging European Research Project to Develop New Tiny Microscopes
28.03.2017 | Technische Universität Braunschweig

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>