Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Start-up markets artificial cell membranes that can speed up drug discovery

21.01.2014
ACM Biolabs, a spin-off company from A*STAR’s Institute of Materials Research and Engineering (IMRE), will market novel plastic cell membranes to be used as low-cost, easily maintained drug targets that may help shorten the drug discovery process by weeks or months and cut cost by two-thirds.

ACM Biolabs, a spin-off company from A*STAR’s Institute of Materials Research and Engineering (IMRE), will market novel plastic cell membranes to be used as low-cost, easily maintained drug targets that help shorten the drug discovery process.


How artificial cell membranes are created - Schematic showing how the artificial cell membranes are formed and their advantages over existing live cell culture methods.

What usually takes weeks or even months can now be done in a matter of days using these new materials. Combined with a robust scalability to large scale quantities, ACM’s artificial cell membranes may cut costs in the initial phase of drug discovery by up to two-thirds.

1. Artificial cell membranes (ACMs) are customised synthetic cell membranes that mimic live, targeted membrane proteins. The new technology allows the production of membrane proteins without the need for the specially controlled environments, conditions and training that is required in current live cell culture laboratories. ACM Biolabs’ products, which can be tailor-made to a pharmaceutical company’s specific drug testing requirements, are produced rapidly and are stable over a long period, leading to significantly reduced costs and streamlining of the currently tedious and cumbersome drug discovery process. The patented artificial cell membrane technology was first developed at A*STAR’s IMRE in 2009 by integrating biology with innovative materials science know-how and is now licensed to ACM Biolabs.

2. Cells communicate with each other and exchange vital molecules through their ‘skin’ or membranes, facilitated by specific proteins, or membrane proteins. Disruption of the communication pattern can lead to diseases such as cancer, diabetes, obesity, and Parkinson’s Disease. Understanding the working of membrane proteins is critical in creating medicines to combat diseases. ACM Biolabs has adapted natural cellular processes to invent a simple yet functional system, where synthetic materials are engineered to host membrane proteins. These include some membrane proteins that cannot currently be produced in a stable form using today’s cell-based technology, i.e. the so-called ‘hard targets’.

3. “Our proprietary artificial cell membrane technology is a unique combination of engineered polymer materials and biology that gives pharmaceutical companies a faster, cheaper alternative to current drug discovery methods,” said Dr Madhavan Nallani, a former IMRE scientist who is the founder and now the Director of ACM Biolabs, which produces these patented artificial cell membranes with customised membrane proteins.

4. “Our aim is to lower the entry barrier for more companies and labs to screen novel drugs, or test existing drugs on novel targets”, added Dr Nallani. “ACM Biolabs believes that our product can reduce the risk from some of the more daunting phases in the drug discovery process and allows the creation of a new generation of innovative drugs.”

5. “The commercialisation of this technology is an excellent example of A*STAR’s plan to push lab-based research into the marketplace,” said Prof Andy Hor, Executive Director of IMRE. “The success of this spin-off is also part of our efforts to create a generation of scientist-entrepreneurs that can help lead Singapore’s charge in a future knowledge-based economy”.

6. ACM Biolabs targets the drug discovery industry, especially the life science tools market, which is worth an estimated US$42 billion currently. Its technology will significantly impact the membrane protein related assays in the cell biology sector, which accounts for a third of the life science tools industry revenue and is expected to reach US$15 billion by 2015. The market potential is huge, especially for disruptive technologies like Artificial Cell Membranes, since the majority of known membrane proteins have yet to be explored as drug targets partly due to the difficulties in studying them in live cells. This serves as a validation for the company’s technology and also grows the company’s acceptance as a market provider of products and partner for expertise in membrane protein targets.

7. The award-winning Artificial Cell Membrane technology was first recognised as a finalist in the prestigious Asian Innovation Awards 2011 organised by The Wall Street Journal Asia. ACM Biolabs went on to win the “Most Innovative Start-up” award for its potential application in membrane protein drug screening analysis at the Action Community for Entrepreneurship (ACE)-ETPL Investor Forum held in June 2012. ACM Biolabs has also recently secured a SPRING Technology Enterprise Commercialisation Scheme (TECS) Proof-of-Value grant worth S$500,000 to help grow the start-up.

For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email loweom@scei.a-star.edu.sg
For technical enquiries, please contact:
Dr Madhavan Nallani
Director
ACM Biolabs Pte Ltd.,
50 Nanyang Drive, Research Techno Plaza, XFrontier Block 6,
Singapore 637553
DID +65 65927946
Email mnallani@acmbiolabs.com
Annex A – ACM Biolabs and A*STAR Corporate Profiles
About ACM Biolabs
ACM Biolabs is a biotech startup, with its main office and R&D lab in Singapore. Our company uses the artificial cell membrane (ACM) platform to produce tailor-made products and programs centered around 'hard targets' in drug discovery. Typically, these are membrane protein targets that cannot be reliably produced using cell-lines. The mission of ACM Biolabs is to de-risk early stage drug discovery by significantly lowering the costs and time required for drug and antibody screening. Our area of expertise is focused on developing of new screening technologies using properties unique to the ACM matrix. ACM technology is also used in industry-standard assays and enables high-throughput screening at a scale not achievable by current platforms. For more information, please visit www.acmbiolabs.com/home.html.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg.

About Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>