Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Trek-like technology offers noninvasive monitor for patients and athletes

30.04.2009
How long will it take to develop Star Trek-like medical technologies? The gap between science fiction and reality is closing faster than many people may think.

A noninvasive, needle-free system that uses light to measure tissue oxygen and pH will soon be an alternative to the painful use of needles to draw blood and cumbersome equipment to determine metabolic rate. The futuristic system, dubbed the Venus prototype, is being developed by Dr. Babs Soller and her colleagues. It has the capability to measure blood and tissue chemistry, metabolic rate (oxygen consumption) and other parameters.

The sensor and portable monitor are funded by the National Space Biomedical Research Institute (NSBRI) for use in space. Soller said the technology’s multiple, real-time applications will be beneficial to astronauts in their day-to-day activities and to critically ill patients on Earth.

“Tissue and blood chemistry measurements can be used in medical care to assess patients with traumatic injuries and those at risk for cardiovascular collapse,” said Soller, who leads NSBRI’s Smart Medical Systems and Technology team. “The measurement of metabolic rate will let astronauts know how quickly they are using up the oxygen in their life-support backpacks. If spacewalking astronauts run low on oxygen, the situation can become fatal.”

Placed directly on the skin, the four-inch by two-inch sensor uses near infrared light (that is just beyond the visible spectrum) to take the measurements. Blood in tiny blood vessels absorbs some of the light, but the rest is reflected back to the sensor. The monitor analyzes the reflected light to determine metabolic rate, along with tissue oxygen and pH. One unique advantage of Dr. Soller’s near infrared device is that its measurements are not impacted by skin color or body fat.

A noninvasive system also means a reduced risk of infection due to the lack of needle pricks. Most of the system’s development has occurred at the University of Massachusetts Medical School, where Soller is a professor of anesthesiology. She has worked closely with researchers at NASA Johnson Space Center in Houston to develop applications of the Venus system for space.

Former NASA astronaut and NSBRI User Panel Chairman Dr. Leroy Chiao said Soller’s sensor system and other technologies being developed for spaceflight are a wise investment.

“The neat thing about the work being done is that it is a two-for-one deal,” Chiao said. “Not only is this research going to help future astronaut crews and operations, it has very real benefits to people on the ground, especially to people in more rural areas.”

On Earth, there are several areas of health care that could benefit from Venus. However, it is patients treated by emergency personnel on ambulances and on the battlefield that could benefit the most from the technology.

“Eventually, we expect first-responders would have these devices, which would provide feedback on the severity of a person’s injury,” Soller said. “Data can be communicated directly to the hospital. Early access to this type of information may increase a victim’s chances of survival.”

The system’s Earth applications are not limited to urgent care. It will allow doctors to more efficiently monitor pediatric and intensive care patients. Athletes and physical therapy patients also stand to gain from the technology’s ability to measure metabolic rate and to assist in determining the level of activity or exercise that is most beneficial to the individual.

“Athletes would benefit from using these parameters in developing training programs that will help them improve their endurance and performance,” she said. “And we suspect the same thing will be true for patients in physical rehabilitation.”

Currently, Soller and her collaborators are working on several aspects to prepare the sensor for integration into spacesuits by reducing its size, increasing its accuracy in measuring metabolic rate, and developing the capability to run on batteries. These activities will also speed its application in helping to care for patients on Earth.

Soller’s technology is one of a group of innovative medical systems being developed by NSBRI to provide health care to NASA astronauts in space and to improve health care on Earth.

Learn more about other NSBRI technologies at: http://www.nsbri.org/EarthBenefits/FuturisticTechnologies.html

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | NSBRI
Further information:
http://www.bcm.edu
http://www.nsbri.org/NewsPublicOut/Release.epl?r=119
http://www.nsbri.org/EarthBenefits/FuturisticTechnologies.html

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>