Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New spinal implant will help people with paraplegia to exercise paralyzed limbs

23.11.2010
Engineers have developed a new type of microchip muscle stimulator implant that will enable people with paraplegia to exercise their paralysed leg muscles.

It is the first time that researchers have developed a device of this kind that is small enough to be implanted into the spinal canal and incorporates the electrodes and muscle stimulator in one unit. The implant is the size of a child's fingernail.

The Engineering and Physical Sciences Research Council (EPSRC) project is being led by Professor Andreas Demosthenous from University College London. It includes engineers from Freiburg University and the Tyndall Institute in Cork.

"The work has the potential to stimulate more muscle groups than is currently possible with existing technology because a number of these devices can be implanted into the spinal canal", said Professor Andreas Demosthenous. "Stimulation of more muscle groups means users can perform enough movement to carry out controlled exercise such as cycling or rowing."

The devices could also be used for a wide range of restorative functions such as stimulating bladder muscles to help overcome incontinence and stimulating nerves to improve bowel capacity and suppress spasms.

The research team has overcome previous limitations by micro-packaging everything into one tiny unit. Latest laser processing technology has been used to cut tiny electrodes from platinum foil. These are then folded into a 3D shape (which looks like the pages of a book, earning the device the name of the Active Book). The pages close in around the nerve roots. They are micro-welded to a silicon chip which is hermetically sealed to protect against water penetration, which can lead to corrosion of the electronics.

The exciting innovation has been welcomed by Universities and Science Minister David Willetts, who said:

"The Active Book is a good example of how UK scientists and engineers are translating research into innovations that deliver real benefits for society. This tiny implant has the potential to make a real difference to the lives and long-term health of people with paraplegia in the UK and around the world."

The Active Book will be made available for pilot studies sometime next year.

EPSRC Press Office | EurekAlert!
Further information:
http://www.epsrc.ac.uk
http://www.ucl.ac.uk

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>