Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectroscopic imaging reveals early changes leading to breast tumors

07.03.2012
Purdue University researchers have created a new imaging technology that reveals subtle changes in breast tissue, representing a potential tool to determine a woman's risk of developing breast cancer and to study ways of preventing the disease.
The researchers, using a special "3-D culture" that mimics living mammary gland tissue, also showed that a fatty acid found in some foods influences this early precancerous stage. Unlike conventional cell cultures, which are flat, the 3-D cultures have the round shape of milk-producing glands and behave like real tissue, said Sophie Lelièvre (pronounced Le-LEE-YEA-vre), an associate professor of basic medical sciences.

Researchers are studying changes that take place in epithelial cells, which make up tissues and organs where 90 percent of cancers occur. The changes in breast tissue are thought to be necessary for tumors to form, she said.

"By mimicking the early stage conducive to tumors and using a new imaging tool, our goal is to be able to measure this change and then take steps to prevent it," Lelièvre said.

The new imaging technique, called vibrational spectral microscopy, can be used to identify and track certain molecules by measuring their vibration with a laser. Whereas other imaging tools may take days to get results, the new method works at high speed, enabling researchers to measure changes in real time in live tissue, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry.

By monitoring the same 3-D culture before and after exposure to certain risk factors, the new method enables researchers to detect subtle changes in single live cells, he said.

Findings are detailed in a research paper appearing this week in the Biophysical Journal. The paper was written by doctoral students Shuhua Yue, Juan Manuel Cárdenas-Mora, and Lesley S. Chaboub, Lelièvre and Cheng.
"This work shows the importance of engineering for the development of primary prevention research in breast cancer," said Yue, a biomedical engineering student whose work was funded through a fellowship from the U.S. Department of Defense Breast Cancer Research Program.

The research is part of the International Breast Cancer and Nutrition (IBCN) project launched by Purdue in October 2010 to better understand the role nutrients and other environmental factors play in breast tissue alterations and cancer development.

Researchers studied live tissue in a culture that reproduces the mammary epithelium.

"This extremely sensitive technique shows the harmful impact of a nutrient called arachidonic acid," said Lelièvre, associate director of Discovery Groups at the Purdue Center for Cancer Research. "This fatty acid has been previously proposed to increase breast cancer risk, but until now there was no biological evidence of what it could do to alter breast epithelial cells."

The imaging method detects changes in the "basoapical polarity" of epithelial tissues. Specific proteins and other biochemical compounds called lipids are normally located in one of two regions, called the basal and apical membranes. Because only certain proteins and lipids are found in basal membranes, while others are located only in apical membranes, the cells are said to be polarized.

"This polarity is critical for the proper structure and function of tissue," Lelièvre said. "What we have shown previously is that when polarity is altered, tissue that otherwise looks normal can be pushed into a cell cycle necessary to form a tumor. It's the earliest change in the epithelial tissue that puts the cells at risk to form a tumor. Now, thanks to the vibrational spectral microscopy technique developed by Dr. Cheng, we can measure apical polarity status in live tissues and real time."

The findings could lead to a method for preventing tumor formation by restoring the proper polarity.

"We are mimicking formation of breast epithelium as it is normally polarized, and we can play with it and make it lose apical polarity on demand," Lelièvre said. "Then we can mimic an early change thought to be conducive to tumor development."

The researchers aim to use the imaging technology on live 3-D cultures of noncancerous breast tissue to screen for protective and risk factors for breast cancer the same way that tumors are used now in cultures to screen for drugs that can be used for treatment.

"Now there is no good way to assess risk for breast cancer," Lelièvre said. "Assessments are mainly based on family history and genetic changes, and this only accounts for a very small percentage of women who get breast cancer. We need technologies to assess the risk better and then screen for protective factors that could be used on individual patients because not everybody will be responsive to the same factors."

The National Cancer Institute estimates that in the United States in 2009 more than 192,000 women were diagnosed with breast cancer and more than 40,000 women died of the disease.

An immediate application of the technique is a way to study cell lines created from tissue taken from women at different risk levels, screening for factors that could restore full polarity in the breast tissue to prevent tumor formation.
"The state of the art is to take tumor cells, put them in a 3-D culture where they form tumors, and then test drugs on these tumors," Lelièvre said. "What we want to do now is the same thing but for preventive strategies using a normal tissue."

In a collaboration with researchers at Indiana University-Purdue University Indianapolis, the team plans to study cell lines from women who are at different risk levels.

The new imaging tool was needed because conventional live cell imaging methods are designed for flat cell cultures. Mimicking tissue polarity requires a 3-D culture to form the mammary gland structures at the end of the breast ducts. The structures resemble tiny balls about 30 microns in diameter and contain about 35 cells.

Cheng said his lab will continue to develop a "hyperspectral" imaging system capable of not only imaging a specific point in a culture but also many locations to form a point-by-point map so that tissue polarity can be directly visualized.
This work was supported by a Showalter grant, the National Institutes of Health, Komen for the Cure, a Congressionally Directed Medical Research/Breast Cancer Research Program Predoctoral Traineeship, National Cancer Institute, Cancer Prevention Internship Program administered by the Oncological Sciences Center and Discovery Learning Research Center at Purdue's Discovery Park, and an Indiana Clinical and Translational Science Institute Career Development Award.

Writer: Emil Venere, 765-494-3470, venere@purdue.edu
Sources: Sophie Lelièvre, 765-496-7793, lelievre@purdue.edu
Ji-Xin Cheng, 765-494-4335, jcheng@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>