Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectroscopic imaging reveals early changes leading to breast tumors

07.03.2012
Purdue University researchers have created a new imaging technology that reveals subtle changes in breast tissue, representing a potential tool to determine a woman's risk of developing breast cancer and to study ways of preventing the disease.
The researchers, using a special "3-D culture" that mimics living mammary gland tissue, also showed that a fatty acid found in some foods influences this early precancerous stage. Unlike conventional cell cultures, which are flat, the 3-D cultures have the round shape of milk-producing glands and behave like real tissue, said Sophie Lelièvre (pronounced Le-LEE-YEA-vre), an associate professor of basic medical sciences.

Researchers are studying changes that take place in epithelial cells, which make up tissues and organs where 90 percent of cancers occur. The changes in breast tissue are thought to be necessary for tumors to form, she said.

"By mimicking the early stage conducive to tumors and using a new imaging tool, our goal is to be able to measure this change and then take steps to prevent it," Lelièvre said.

The new imaging technique, called vibrational spectral microscopy, can be used to identify and track certain molecules by measuring their vibration with a laser. Whereas other imaging tools may take days to get results, the new method works at high speed, enabling researchers to measure changes in real time in live tissue, said Ji-Xin Cheng, an associate professor of biomedical engineering and chemistry.

By monitoring the same 3-D culture before and after exposure to certain risk factors, the new method enables researchers to detect subtle changes in single live cells, he said.

Findings are detailed in a research paper appearing this week in the Biophysical Journal. The paper was written by doctoral students Shuhua Yue, Juan Manuel Cárdenas-Mora, and Lesley S. Chaboub, Lelièvre and Cheng.
"This work shows the importance of engineering for the development of primary prevention research in breast cancer," said Yue, a biomedical engineering student whose work was funded through a fellowship from the U.S. Department of Defense Breast Cancer Research Program.

The research is part of the International Breast Cancer and Nutrition (IBCN) project launched by Purdue in October 2010 to better understand the role nutrients and other environmental factors play in breast tissue alterations and cancer development.

Researchers studied live tissue in a culture that reproduces the mammary epithelium.

"This extremely sensitive technique shows the harmful impact of a nutrient called arachidonic acid," said Lelièvre, associate director of Discovery Groups at the Purdue Center for Cancer Research. "This fatty acid has been previously proposed to increase breast cancer risk, but until now there was no biological evidence of what it could do to alter breast epithelial cells."

The imaging method detects changes in the "basoapical polarity" of epithelial tissues. Specific proteins and other biochemical compounds called lipids are normally located in one of two regions, called the basal and apical membranes. Because only certain proteins and lipids are found in basal membranes, while others are located only in apical membranes, the cells are said to be polarized.

"This polarity is critical for the proper structure and function of tissue," Lelièvre said. "What we have shown previously is that when polarity is altered, tissue that otherwise looks normal can be pushed into a cell cycle necessary to form a tumor. It's the earliest change in the epithelial tissue that puts the cells at risk to form a tumor. Now, thanks to the vibrational spectral microscopy technique developed by Dr. Cheng, we can measure apical polarity status in live tissues and real time."

The findings could lead to a method for preventing tumor formation by restoring the proper polarity.

"We are mimicking formation of breast epithelium as it is normally polarized, and we can play with it and make it lose apical polarity on demand," Lelièvre said. "Then we can mimic an early change thought to be conducive to tumor development."

The researchers aim to use the imaging technology on live 3-D cultures of noncancerous breast tissue to screen for protective and risk factors for breast cancer the same way that tumors are used now in cultures to screen for drugs that can be used for treatment.

"Now there is no good way to assess risk for breast cancer," Lelièvre said. "Assessments are mainly based on family history and genetic changes, and this only accounts for a very small percentage of women who get breast cancer. We need technologies to assess the risk better and then screen for protective factors that could be used on individual patients because not everybody will be responsive to the same factors."

The National Cancer Institute estimates that in the United States in 2009 more than 192,000 women were diagnosed with breast cancer and more than 40,000 women died of the disease.

An immediate application of the technique is a way to study cell lines created from tissue taken from women at different risk levels, screening for factors that could restore full polarity in the breast tissue to prevent tumor formation.
"The state of the art is to take tumor cells, put them in a 3-D culture where they form tumors, and then test drugs on these tumors," Lelièvre said. "What we want to do now is the same thing but for preventive strategies using a normal tissue."

In a collaboration with researchers at Indiana University-Purdue University Indianapolis, the team plans to study cell lines from women who are at different risk levels.

The new imaging tool was needed because conventional live cell imaging methods are designed for flat cell cultures. Mimicking tissue polarity requires a 3-D culture to form the mammary gland structures at the end of the breast ducts. The structures resemble tiny balls about 30 microns in diameter and contain about 35 cells.

Cheng said his lab will continue to develop a "hyperspectral" imaging system capable of not only imaging a specific point in a culture but also many locations to form a point-by-point map so that tissue polarity can be directly visualized.
This work was supported by a Showalter grant, the National Institutes of Health, Komen for the Cure, a Congressionally Directed Medical Research/Breast Cancer Research Program Predoctoral Traineeship, National Cancer Institute, Cancer Prevention Internship Program administered by the Oncological Sciences Center and Discovery Learning Research Center at Purdue's Discovery Park, and an Indiana Clinical and Translational Science Institute Career Development Award.

Writer: Emil Venere, 765-494-3470, venere@purdue.edu
Sources: Sophie Lelièvre, 765-496-7793, lelievre@purdue.edu
Ji-Xin Cheng, 765-494-4335, jcheng@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Medical Engineering:

nachricht New bioimaging technique is fast and economical
21.08.2017 | Rensselaer Polytechnic Institute

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>