Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectacular new images from inside the body

19.11.2010
In a ceremony attended by Bavarian Minister President Horst Seehofer, Siemens presented the university hospital Klinikum rechts der Isar in Munich with the world’s first device that combines magnetic resonance imaging with positron emission tomography.

The department of nuclear medicine at the university hospital Klinikum rechts der Isar of the Munich Technical University today started clinical use testing with a world’s first in medical technology, thereby opening up new perspectives for the diagnosis of diseases such as cancer or dementia.


The combination of a magnetic resonance tomograph (MR) and a positron emission tomograph (PET) in one device allows doctors – for the first time – to simultaneously see the position of internal organs, how these are working, as well as their metabolism, all in a single image. This may help doctors to make a more accurate diagnoses by not only seeing where a tumor is in the body, but also its type and its activity. Moreover it may display how the body reacts to medication administered to the patient. The device, called the Biograph mMR*, has been developed by Siemens Healthcare and is a pioneering achievement in medical imaging.

The Biograph mMR combines two technologies that normally would not be able to work next to each other: Magnetic resonance imaging uses a strong magnetic field and electromagnetic waves, while positron emission tomography uses low-dose radioactively charged radiopharmaceuticals, with which the patient is injected before the examination. These radiopharmaceuticals react with the body tissue and the resulting radiation is measured and finally converted into an image. According to physics applied in these imaging techniques, those two technologies should conflict with each other and make simultaneous imaging impossible. But the Biograph mMR is designed to overcome this physical hurdle. Thanks to funding of the Deutsche Forschungsgemeinschaft (DFG) the first systems will be installed in Germany.

In his remarks at the celebratory commissioning of the device, Bavarian Minister President Horst Seehofer said, “Bavaria’s high-tech architects like Siemens, combined with the top-notch science that we have here in both university hospitals in Munich, result in the kind of strong partnership that contribute to Bavaria’s strength and prosperity and that is the envy of many around the world. Before the upcoming holiday season, Bavaria will enact a new future-focused program called “Bavaria on the Move.” Under this program, we will continue to make significant investments in research and technology throughout all parts of the Bavarian state. This is, and will remain, Bavaria’s sovereign path toward prosperity and employment.”

MRI and PET are already well-established imaging techniques in medicine, and have been used for a long time to answer important clinical questions. Now, the combination of both technologies in one system is expected to change the diagnosis of many diseases, including many types of cancer as well as dementia. ”Together with our partner Siemens we are entering a new dimension in diagnostic imaging today“, said Prof. Dr. Markus Schwaiger, Director of the department for nuclear medicine at the university hospital. „We’ve initiated clinical use testing of Biograph mMR in an effort to diagnose diseases at a very early stage; to see the progression of disease and to use that information to develop a therapy plan precisely focused on the respective patient. Furthermore, we plan to use the system for cancer follow-up in the long run, by reducing radiation exposure by the use of the system.“

In addition, the combination of the two systems will significantly cut the time needed for an examination compared to when two separate systems are used. The same works for the space – where room was needed for two large machines before, now only one combined machine is required. That gives hospitals more space for patients. “We can master the challenges of our healthcare systems only if we detect diseases as early as possible and treat them appropriately, while keeping an eye on costs,” explained Dr. Hermann Requardt, CEO of the Siemens Healthcare Sector. “Our Biograph mMR is a tool for doctors, enabling them to more quickly and accurately collect information on the type, stage, and progress of cancers, for example. The system may also be suitable for monitoring the progress and effectiveness of therapies. The Biograph mMR at the hospital Rechts der Isar clinic is a milestone in image-based diagnostics.”

Combining MRI and PET was a great technological feat, as the two processes using different physical effects could normally not work close to each other. The magnetic fields generated in MRI interfere with usual PET detectors, what until now prevented simultaneously taken high-resolution human images. Patients had to be scanned in two separate systems, with a certain time interval between the exams. With the Biograph mMR, Siemens has developed the first system that provide highly innovative PET detectors, which work very well inside an MR system.

Tanja Schmidhofer | Uni München
Further information:
http://www.siemens.com/press/healthcare/biograph-mmr

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>