Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectacular new images from inside the body

19.11.2010
In a ceremony attended by Bavarian Minister President Horst Seehofer, Siemens presented the university hospital Klinikum rechts der Isar in Munich with the world’s first device that combines magnetic resonance imaging with positron emission tomography.

The department of nuclear medicine at the university hospital Klinikum rechts der Isar of the Munich Technical University today started clinical use testing with a world’s first in medical technology, thereby opening up new perspectives for the diagnosis of diseases such as cancer or dementia.


The combination of a magnetic resonance tomograph (MR) and a positron emission tomograph (PET) in one device allows doctors – for the first time – to simultaneously see the position of internal organs, how these are working, as well as their metabolism, all in a single image. This may help doctors to make a more accurate diagnoses by not only seeing where a tumor is in the body, but also its type and its activity. Moreover it may display how the body reacts to medication administered to the patient. The device, called the Biograph mMR*, has been developed by Siemens Healthcare and is a pioneering achievement in medical imaging.

The Biograph mMR combines two technologies that normally would not be able to work next to each other: Magnetic resonance imaging uses a strong magnetic field and electromagnetic waves, while positron emission tomography uses low-dose radioactively charged radiopharmaceuticals, with which the patient is injected before the examination. These radiopharmaceuticals react with the body tissue and the resulting radiation is measured and finally converted into an image. According to physics applied in these imaging techniques, those two technologies should conflict with each other and make simultaneous imaging impossible. But the Biograph mMR is designed to overcome this physical hurdle. Thanks to funding of the Deutsche Forschungsgemeinschaft (DFG) the first systems will be installed in Germany.

In his remarks at the celebratory commissioning of the device, Bavarian Minister President Horst Seehofer said, “Bavaria’s high-tech architects like Siemens, combined with the top-notch science that we have here in both university hospitals in Munich, result in the kind of strong partnership that contribute to Bavaria’s strength and prosperity and that is the envy of many around the world. Before the upcoming holiday season, Bavaria will enact a new future-focused program called “Bavaria on the Move.” Under this program, we will continue to make significant investments in research and technology throughout all parts of the Bavarian state. This is, and will remain, Bavaria’s sovereign path toward prosperity and employment.”

MRI and PET are already well-established imaging techniques in medicine, and have been used for a long time to answer important clinical questions. Now, the combination of both technologies in one system is expected to change the diagnosis of many diseases, including many types of cancer as well as dementia. ”Together with our partner Siemens we are entering a new dimension in diagnostic imaging today“, said Prof. Dr. Markus Schwaiger, Director of the department for nuclear medicine at the university hospital. „We’ve initiated clinical use testing of Biograph mMR in an effort to diagnose diseases at a very early stage; to see the progression of disease and to use that information to develop a therapy plan precisely focused on the respective patient. Furthermore, we plan to use the system for cancer follow-up in the long run, by reducing radiation exposure by the use of the system.“

In addition, the combination of the two systems will significantly cut the time needed for an examination compared to when two separate systems are used. The same works for the space – where room was needed for two large machines before, now only one combined machine is required. That gives hospitals more space for patients. “We can master the challenges of our healthcare systems only if we detect diseases as early as possible and treat them appropriately, while keeping an eye on costs,” explained Dr. Hermann Requardt, CEO of the Siemens Healthcare Sector. “Our Biograph mMR is a tool for doctors, enabling them to more quickly and accurately collect information on the type, stage, and progress of cancers, for example. The system may also be suitable for monitoring the progress and effectiveness of therapies. The Biograph mMR at the hospital Rechts der Isar clinic is a milestone in image-based diagnostics.”

Combining MRI and PET was a great technological feat, as the two processes using different physical effects could normally not work close to each other. The magnetic fields generated in MRI interfere with usual PET detectors, what until now prevented simultaneously taken high-resolution human images. Patients had to be scanned in two separate systems, with a certain time interval between the exams. With the Biograph mMR, Siemens has developed the first system that provide highly innovative PET detectors, which work very well inside an MR system.

Tanja Schmidhofer | Uni München
Further information:
http://www.siemens.com/press/healthcare/biograph-mmr

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>