Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spectacular new images from inside the body

In a ceremony attended by Bavarian Minister President Horst Seehofer, Siemens presented the university hospital Klinikum rechts der Isar in Munich with the world’s first device that combines magnetic resonance imaging with positron emission tomography.

The department of nuclear medicine at the university hospital Klinikum rechts der Isar of the Munich Technical University today started clinical use testing with a world’s first in medical technology, thereby opening up new perspectives for the diagnosis of diseases such as cancer or dementia.

The combination of a magnetic resonance tomograph (MR) and a positron emission tomograph (PET) in one device allows doctors – for the first time – to simultaneously see the position of internal organs, how these are working, as well as their metabolism, all in a single image. This may help doctors to make a more accurate diagnoses by not only seeing where a tumor is in the body, but also its type and its activity. Moreover it may display how the body reacts to medication administered to the patient. The device, called the Biograph mMR*, has been developed by Siemens Healthcare and is a pioneering achievement in medical imaging.

The Biograph mMR combines two technologies that normally would not be able to work next to each other: Magnetic resonance imaging uses a strong magnetic field and electromagnetic waves, while positron emission tomography uses low-dose radioactively charged radiopharmaceuticals, with which the patient is injected before the examination. These radiopharmaceuticals react with the body tissue and the resulting radiation is measured and finally converted into an image. According to physics applied in these imaging techniques, those two technologies should conflict with each other and make simultaneous imaging impossible. But the Biograph mMR is designed to overcome this physical hurdle. Thanks to funding of the Deutsche Forschungsgemeinschaft (DFG) the first systems will be installed in Germany.

In his remarks at the celebratory commissioning of the device, Bavarian Minister President Horst Seehofer said, “Bavaria’s high-tech architects like Siemens, combined with the top-notch science that we have here in both university hospitals in Munich, result in the kind of strong partnership that contribute to Bavaria’s strength and prosperity and that is the envy of many around the world. Before the upcoming holiday season, Bavaria will enact a new future-focused program called “Bavaria on the Move.” Under this program, we will continue to make significant investments in research and technology throughout all parts of the Bavarian state. This is, and will remain, Bavaria’s sovereign path toward prosperity and employment.”

MRI and PET are already well-established imaging techniques in medicine, and have been used for a long time to answer important clinical questions. Now, the combination of both technologies in one system is expected to change the diagnosis of many diseases, including many types of cancer as well as dementia. ”Together with our partner Siemens we are entering a new dimension in diagnostic imaging today“, said Prof. Dr. Markus Schwaiger, Director of the department for nuclear medicine at the university hospital. „We’ve initiated clinical use testing of Biograph mMR in an effort to diagnose diseases at a very early stage; to see the progression of disease and to use that information to develop a therapy plan precisely focused on the respective patient. Furthermore, we plan to use the system for cancer follow-up in the long run, by reducing radiation exposure by the use of the system.“

In addition, the combination of the two systems will significantly cut the time needed for an examination compared to when two separate systems are used. The same works for the space – where room was needed for two large machines before, now only one combined machine is required. That gives hospitals more space for patients. “We can master the challenges of our healthcare systems only if we detect diseases as early as possible and treat them appropriately, while keeping an eye on costs,” explained Dr. Hermann Requardt, CEO of the Siemens Healthcare Sector. “Our Biograph mMR is a tool for doctors, enabling them to more quickly and accurately collect information on the type, stage, and progress of cancers, for example. The system may also be suitable for monitoring the progress and effectiveness of therapies. The Biograph mMR at the hospital Rechts der Isar clinic is a milestone in image-based diagnostics.”

Combining MRI and PET was a great technological feat, as the two processes using different physical effects could normally not work close to each other. The magnetic fields generated in MRI interfere with usual PET detectors, what until now prevented simultaneously taken high-resolution human images. Patients had to be scanned in two separate systems, with a certain time interval between the exams. With the Biograph mMR, Siemens has developed the first system that provide highly innovative PET detectors, which work very well inside an MR system.

Tanja Schmidhofer | Uni München
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>