Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectacular new images from inside the body

19.11.2010
In a ceremony attended by Bavarian Minister President Horst Seehofer, Siemens presented the university hospital Klinikum rechts der Isar in Munich with the world’s first device that combines magnetic resonance imaging with positron emission tomography.

The department of nuclear medicine at the university hospital Klinikum rechts der Isar of the Munich Technical University today started clinical use testing with a world’s first in medical technology, thereby opening up new perspectives for the diagnosis of diseases such as cancer or dementia.


The combination of a magnetic resonance tomograph (MR) and a positron emission tomograph (PET) in one device allows doctors – for the first time – to simultaneously see the position of internal organs, how these are working, as well as their metabolism, all in a single image. This may help doctors to make a more accurate diagnoses by not only seeing where a tumor is in the body, but also its type and its activity. Moreover it may display how the body reacts to medication administered to the patient. The device, called the Biograph mMR*, has been developed by Siemens Healthcare and is a pioneering achievement in medical imaging.

The Biograph mMR combines two technologies that normally would not be able to work next to each other: Magnetic resonance imaging uses a strong magnetic field and electromagnetic waves, while positron emission tomography uses low-dose radioactively charged radiopharmaceuticals, with which the patient is injected before the examination. These radiopharmaceuticals react with the body tissue and the resulting radiation is measured and finally converted into an image. According to physics applied in these imaging techniques, those two technologies should conflict with each other and make simultaneous imaging impossible. But the Biograph mMR is designed to overcome this physical hurdle. Thanks to funding of the Deutsche Forschungsgemeinschaft (DFG) the first systems will be installed in Germany.

In his remarks at the celebratory commissioning of the device, Bavarian Minister President Horst Seehofer said, “Bavaria’s high-tech architects like Siemens, combined with the top-notch science that we have here in both university hospitals in Munich, result in the kind of strong partnership that contribute to Bavaria’s strength and prosperity and that is the envy of many around the world. Before the upcoming holiday season, Bavaria will enact a new future-focused program called “Bavaria on the Move.” Under this program, we will continue to make significant investments in research and technology throughout all parts of the Bavarian state. This is, and will remain, Bavaria’s sovereign path toward prosperity and employment.”

MRI and PET are already well-established imaging techniques in medicine, and have been used for a long time to answer important clinical questions. Now, the combination of both technologies in one system is expected to change the diagnosis of many diseases, including many types of cancer as well as dementia. ”Together with our partner Siemens we are entering a new dimension in diagnostic imaging today“, said Prof. Dr. Markus Schwaiger, Director of the department for nuclear medicine at the university hospital. „We’ve initiated clinical use testing of Biograph mMR in an effort to diagnose diseases at a very early stage; to see the progression of disease and to use that information to develop a therapy plan precisely focused on the respective patient. Furthermore, we plan to use the system for cancer follow-up in the long run, by reducing radiation exposure by the use of the system.“

In addition, the combination of the two systems will significantly cut the time needed for an examination compared to when two separate systems are used. The same works for the space – where room was needed for two large machines before, now only one combined machine is required. That gives hospitals more space for patients. “We can master the challenges of our healthcare systems only if we detect diseases as early as possible and treat them appropriately, while keeping an eye on costs,” explained Dr. Hermann Requardt, CEO of the Siemens Healthcare Sector. “Our Biograph mMR is a tool for doctors, enabling them to more quickly and accurately collect information on the type, stage, and progress of cancers, for example. The system may also be suitable for monitoring the progress and effectiveness of therapies. The Biograph mMR at the hospital Rechts der Isar clinic is a milestone in image-based diagnostics.”

Combining MRI and PET was a great technological feat, as the two processes using different physical effects could normally not work close to each other. The magnetic fields generated in MRI interfere with usual PET detectors, what until now prevented simultaneously taken high-resolution human images. Patients had to be scanned in two separate systems, with a certain time interval between the exams. With the Biograph mMR, Siemens has developed the first system that provide highly innovative PET detectors, which work very well inside an MR system.

Tanja Schmidhofer | Uni München
Further information:
http://www.siemens.com/press/healthcare/biograph-mmr

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>