Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software for Patient-Friendly Radiation Therapy - The SPARTA Research Project Commences on April 1.

03.04.2013
X-rays can provide much more than radiography for diagnosing bone fractures or internal disease. In the form of high-energy photon beams, cancer can be treated by exposing tumors to a strong dose of targeted radiation.
This type of radiation therapy is currently one of the most important treatment methods for cancer; about half of all tumor patients are now treated with photon or particle beams. The novel, interdisciplinary SPARTA project commenced on April 1, 2013 to improve this method by using modern software technology to support tumor radiation in a more effective and patient-friendly fashion than existing methods.

When a clinician treats a tumor near a sensitive tissue structure such as nerves or organs, special ‘intensity-modulated’ radiation therapy is applied. Instead of exposing a tumor to several relatively wide and strong photon beams, many individually dosed partial beams from different directions coincide. Because these beams are targeted to overlap in the tumor, the highest dose is only attained at this location. Ideally, the surrounding healthy tissue remains only marginally affected.

In practice, however, this method is somewhat limited because a single application of such radiation has very little effect. Over a series of weeks, patients undergo about 30 treatments. During this time, the patient’s body can change because of differences in tumor size or loss or gain in body weight. These changes affect the position of the tumor and thus the target of the radiation. This increases the risk that beams partially miss the tumor and instead damage healthy tissue.

In addition, breast and abdominal tumors present a further problem. Because the patient breathes during radiation, the tumor inevitably shifts. To reach the tumor despite this motion, the clinician must select a relatively large target area, thereby damaging more healthy surrounding tissue than necessary.

This is where SPARTA comes into play. In this research project, scientists from ten different fields develop novel, adaptive, expandable software systems to support clinicians during planning and application of radiation therapy. The overarching aim of SPARTA is to make radiation therapy more efficient, safe, and effective using these novel systems. The project goals include:

• Accurately Measuring Variations
Computer-supported imaging and sensor systems should precisely measure when and how the anatomy of the patient changes both over the weeks of the treatment and during the radiation. The systems should determine the patient’s precise position and monitor patient movements such as breathing. Exact measurement of the individual variations is a requisite for optimally adapting the radiation therapy to each patient.
• Precisely Estimating Dosage
The software should compare the original radiation plan to variations that arise between or during treatment sessions, allowing clinicians to determine whether radiation has indeed reached the planned target. In addition, the program should reliably estimate the cumulative dose that the tumor has received after a certain number of treatments, allowing better judgment of sufficient tumor radiation.
• Intelligently Adapting the Radiation Plan
SPARTA is developing a program that can judiciously adapt a radiation plan to measured changes or even to expected variations between and during each patient’s treatments. How pronounced and regular are the breathing movements, and do these impact the movement of the target region? This information should be incorporated into each radiation plan before each treatment and provide increased accuracy. In addition, planning should become ‘adaptive’, capable of simple and flexible adjustment during the course of therapy in case the tumor shifts due to patient weight loss or small changes in body position. This provides increased assurance that the planned radiation dose reaches the tumor and damages as little surrounding tissue as possible.

• Analyzing the Tumor in Detail
To plan the complete radiation, patients currently undergo computer tomography. This allows doctors to determine the position of a tumor accurately, but its structure only to a limited extent. Which parts are still active and which are already necrotic? This information is important because only the active region of a tumor must be radiated, not the inactive. These details can be determined through special procedures such as magnetic resonance imaging (MRI) or positron emission tomography (PET). SPARTA researchers aim for a systematic investigation of the uses of such procedures for more precise multimodal radiation planning.

About the SPARTA Project:
SPARTA stands for “Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility.” The project is funded by the German Federal Ministry of Education and Research with a contribution of almost eight million euro. It commences on April 1, 2013 and will run for three years. The consortium consists of ten partners, including research institutes, medical technology companies, and university hospitals.
Project Partners:
• Fraunhofer Institute for Medical Image Computing MEVIS, Bremen and Lübeck (coordinator)
• German Cancer Research Center DFKZ, Heidelberg
• Fraunhofer Institute for Industrial Mathematics IWTM, Kaiserslautern
• University Hospital, Heidelberg
• Hospital of the Ludwig Maximilian University of Munich
• Dresden University of Technology, Faculty of Medicine
• Heidelberg Ion-Beam Therapy Center, Heidelberg
• Siemens AG, Forchheim
• MeVis Medical Solutions AG, Bremen
• Precisis AG, Heidelberg

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

nachricht Theranostic nanoparticles for tracking and monitoring disease state
13.11.2017 | SLAS (Society for Laboratory Automation and Screening)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>