Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software for Patient-Friendly Radiation Therapy - The SPARTA Research Project Commences on April 1.

03.04.2013
X-rays can provide much more than radiography for diagnosing bone fractures or internal disease. In the form of high-energy photon beams, cancer can be treated by exposing tumors to a strong dose of targeted radiation.
This type of radiation therapy is currently one of the most important treatment methods for cancer; about half of all tumor patients are now treated with photon or particle beams. The novel, interdisciplinary SPARTA project commenced on April 1, 2013 to improve this method by using modern software technology to support tumor radiation in a more effective and patient-friendly fashion than existing methods.

When a clinician treats a tumor near a sensitive tissue structure such as nerves or organs, special ‘intensity-modulated’ radiation therapy is applied. Instead of exposing a tumor to several relatively wide and strong photon beams, many individually dosed partial beams from different directions coincide. Because these beams are targeted to overlap in the tumor, the highest dose is only attained at this location. Ideally, the surrounding healthy tissue remains only marginally affected.

In practice, however, this method is somewhat limited because a single application of such radiation has very little effect. Over a series of weeks, patients undergo about 30 treatments. During this time, the patient’s body can change because of differences in tumor size or loss or gain in body weight. These changes affect the position of the tumor and thus the target of the radiation. This increases the risk that beams partially miss the tumor and instead damage healthy tissue.

In addition, breast and abdominal tumors present a further problem. Because the patient breathes during radiation, the tumor inevitably shifts. To reach the tumor despite this motion, the clinician must select a relatively large target area, thereby damaging more healthy surrounding tissue than necessary.

This is where SPARTA comes into play. In this research project, scientists from ten different fields develop novel, adaptive, expandable software systems to support clinicians during planning and application of radiation therapy. The overarching aim of SPARTA is to make radiation therapy more efficient, safe, and effective using these novel systems. The project goals include:

• Accurately Measuring Variations
Computer-supported imaging and sensor systems should precisely measure when and how the anatomy of the patient changes both over the weeks of the treatment and during the radiation. The systems should determine the patient’s precise position and monitor patient movements such as breathing. Exact measurement of the individual variations is a requisite for optimally adapting the radiation therapy to each patient.
• Precisely Estimating Dosage
The software should compare the original radiation plan to variations that arise between or during treatment sessions, allowing clinicians to determine whether radiation has indeed reached the planned target. In addition, the program should reliably estimate the cumulative dose that the tumor has received after a certain number of treatments, allowing better judgment of sufficient tumor radiation.
• Intelligently Adapting the Radiation Plan
SPARTA is developing a program that can judiciously adapt a radiation plan to measured changes or even to expected variations between and during each patient’s treatments. How pronounced and regular are the breathing movements, and do these impact the movement of the target region? This information should be incorporated into each radiation plan before each treatment and provide increased accuracy. In addition, planning should become ‘adaptive’, capable of simple and flexible adjustment during the course of therapy in case the tumor shifts due to patient weight loss or small changes in body position. This provides increased assurance that the planned radiation dose reaches the tumor and damages as little surrounding tissue as possible.

• Analyzing the Tumor in Detail
To plan the complete radiation, patients currently undergo computer tomography. This allows doctors to determine the position of a tumor accurately, but its structure only to a limited extent. Which parts are still active and which are already necrotic? This information is important because only the active region of a tumor must be radiated, not the inactive. These details can be determined through special procedures such as magnetic resonance imaging (MRI) or positron emission tomography (PET). SPARTA researchers aim for a systematic investigation of the uses of such procedures for more precise multimodal radiation planning.

About the SPARTA Project:
SPARTA stands for “Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility.” The project is funded by the German Federal Ministry of Education and Research with a contribution of almost eight million euro. It commences on April 1, 2013 and will run for three years. The consortium consists of ten partners, including research institutes, medical technology companies, and university hospitals.
Project Partners:
• Fraunhofer Institute for Medical Image Computing MEVIS, Bremen and Lübeck (coordinator)
• German Cancer Research Center DFKZ, Heidelberg
• Fraunhofer Institute for Industrial Mathematics IWTM, Kaiserslautern
• University Hospital, Heidelberg
• Hospital of the Ludwig Maximilian University of Munich
• Dresden University of Technology, Faculty of Medicine
• Heidelberg Ion-Beam Therapy Center, Heidelberg
• Siemens AG, Forchheim
• MeVis Medical Solutions AG, Bremen
• Precisis AG, Heidelberg

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht Novel PET imaging agent could help guide therapy for brain diseases
03.04.2018 | Society of Nuclear Medicine and Molecular Imaging

nachricht New Computer Architecture: Time Lapse for Dementia Research
29.03.2018 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>