Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software for Patient-Friendly Radiation Therapy - The SPARTA Research Project Commences on April 1.

03.04.2013
X-rays can provide much more than radiography for diagnosing bone fractures or internal disease. In the form of high-energy photon beams, cancer can be treated by exposing tumors to a strong dose of targeted radiation.
This type of radiation therapy is currently one of the most important treatment methods for cancer; about half of all tumor patients are now treated with photon or particle beams. The novel, interdisciplinary SPARTA project commenced on April 1, 2013 to improve this method by using modern software technology to support tumor radiation in a more effective and patient-friendly fashion than existing methods.

When a clinician treats a tumor near a sensitive tissue structure such as nerves or organs, special ‘intensity-modulated’ radiation therapy is applied. Instead of exposing a tumor to several relatively wide and strong photon beams, many individually dosed partial beams from different directions coincide. Because these beams are targeted to overlap in the tumor, the highest dose is only attained at this location. Ideally, the surrounding healthy tissue remains only marginally affected.

In practice, however, this method is somewhat limited because a single application of such radiation has very little effect. Over a series of weeks, patients undergo about 30 treatments. During this time, the patient’s body can change because of differences in tumor size or loss or gain in body weight. These changes affect the position of the tumor and thus the target of the radiation. This increases the risk that beams partially miss the tumor and instead damage healthy tissue.

In addition, breast and abdominal tumors present a further problem. Because the patient breathes during radiation, the tumor inevitably shifts. To reach the tumor despite this motion, the clinician must select a relatively large target area, thereby damaging more healthy surrounding tissue than necessary.

This is where SPARTA comes into play. In this research project, scientists from ten different fields develop novel, adaptive, expandable software systems to support clinicians during planning and application of radiation therapy. The overarching aim of SPARTA is to make radiation therapy more efficient, safe, and effective using these novel systems. The project goals include:

• Accurately Measuring Variations
Computer-supported imaging and sensor systems should precisely measure when and how the anatomy of the patient changes both over the weeks of the treatment and during the radiation. The systems should determine the patient’s precise position and monitor patient movements such as breathing. Exact measurement of the individual variations is a requisite for optimally adapting the radiation therapy to each patient.
• Precisely Estimating Dosage
The software should compare the original radiation plan to variations that arise between or during treatment sessions, allowing clinicians to determine whether radiation has indeed reached the planned target. In addition, the program should reliably estimate the cumulative dose that the tumor has received after a certain number of treatments, allowing better judgment of sufficient tumor radiation.
• Intelligently Adapting the Radiation Plan
SPARTA is developing a program that can judiciously adapt a radiation plan to measured changes or even to expected variations between and during each patient’s treatments. How pronounced and regular are the breathing movements, and do these impact the movement of the target region? This information should be incorporated into each radiation plan before each treatment and provide increased accuracy. In addition, planning should become ‘adaptive’, capable of simple and flexible adjustment during the course of therapy in case the tumor shifts due to patient weight loss or small changes in body position. This provides increased assurance that the planned radiation dose reaches the tumor and damages as little surrounding tissue as possible.

• Analyzing the Tumor in Detail
To plan the complete radiation, patients currently undergo computer tomography. This allows doctors to determine the position of a tumor accurately, but its structure only to a limited extent. Which parts are still active and which are already necrotic? This information is important because only the active region of a tumor must be radiated, not the inactive. These details can be determined through special procedures such as magnetic resonance imaging (MRI) or positron emission tomography (PET). SPARTA researchers aim for a systematic investigation of the uses of such procedures for more precise multimodal radiation planning.

About the SPARTA Project:
SPARTA stands for “Software Platform for Adaptive Multimodal Radio and Particle Therapy with Autarkic Extendibility.” The project is funded by the German Federal Ministry of Education and Research with a contribution of almost eight million euro. It commences on April 1, 2013 and will run for three years. The consortium consists of ten partners, including research institutes, medical technology companies, and university hospitals.
Project Partners:
• Fraunhofer Institute for Medical Image Computing MEVIS, Bremen and Lübeck (coordinator)
• German Cancer Research Center DFKZ, Heidelberg
• Fraunhofer Institute for Industrial Mathematics IWTM, Kaiserslautern
• University Hospital, Heidelberg
• Hospital of the Ludwig Maximilian University of Munich
• Dresden University of Technology, Faculty of Medicine
• Heidelberg Ion-Beam Therapy Center, Heidelberg
• Siemens AG, Forchheim
• MeVis Medical Solutions AG, Bremen
• Precisis AG, Heidelberg

Bianka Hofmann | Fraunhofer-Institut
Further information:
http://www.mevis.fraunhofer.de

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>