Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers

06.04.2010
Nanoparticle-core polymer holds promise as an absorbable, weight-bearing replacement for traditional graft materials

Orthopedic surgeons are often hamstrung by less-than-ideal grafting material when performing surgeries for complex bone injuries resulting from trauma, aging or cancer.

Conventional synthetic bone grafts are typically made of stiff polymers or brittle ceramics, and cannot readily conform to the complex and irregular shapes that often result from injury; in addition, they often require metallic fixation devices that require open surgeries to insert and remove. Ideally, a scaffolding graft would conform to complex shapes of an injury site, provide weight-bearing support, require less invasive surgical delivery, and ultimately disappear when no longer needed.

Using a nanoparticle core, Jie Song, PhD, assistant professor of orthopedics & physical rehabilitation and cell biology at the University of Massachusetts Medical School, and postdoctoral fellow Jianwen Xu, have fashioned a new type of tissue and bone scaffolding polymer that addresses a number of these long-standing limitations. Research published in the online Early Edition of Proceedings of the National Academy of Sciences, describes the development of a class of heat-activated smart materials that combine tissue-like properties and strength that are clinically safe to deploy and able to integrate with surrounding tissue.

The key feature of the new polymer is its heat-activated malleability and shape memory. Using CT scans and MRI images of the injury site, Song envisions physicians creating a polymer mold of the scaffolding needed to stabilize a skeletal injury site, in the lab, prior to surgery. Heat activated at a safe 50°C, the smart polymer could then be reshaped to a more compressed form suitable for insertion in the body through a small, minimally invasive incision. Once at the injury site, the idea is to then thermally re-activate the polymer to cause it to revert to its original, pre-molded shape in seconds, according to Song.

In addition to providing mechanical stabilization to the skeletal structure, because the biodegradable material is similar to those used in dissolvable sutures, it can be safely reabsorbed by the body as it breaks down over time. Therefore, there is no need for a second surgery to remove the implant. Additionally, as the scaffolding degrades, the polymer provides a porous structure that promotes tissue growth and integration. At the same time, the polymer has the ability to deliver therapeutics to accelerate new bone growth and integration.

"Strong and resorbable smart implants could have paradigm-changing impact on a number of surgical interventions that currently rely on the use of more invasive and less effective metallic cages, fixators and stents," said Song. "From spinal fusion to alleviate chronic lower back pain, vertebroplasty for treating vertebral fractures to angioplasty for widening narrowed or obstructed blood vessels, there are tremendous clinical applications for smart polymers."

Song and colleagues are testing the safety and efficacy of the material in animal models, which they hope will pave the way for future clinical trials.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $240 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit www.umassmed.edu

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>