Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small Assist Device Used in Emergency Case as Twin, Heart Booster Pumps for First Time in U.S.

15.11.2010
BiVAD system rivals the artificial heart

The Bluhm Cardiovascular Institute of Northwestern Memorial Hospital recently implanted a patient with two of the smallest experimental ventricular assist devices (VADs) currently available for study in humans.

VADs are designed to assist either the right (RVAD) or left (LVAD) ventricle, or both (BiVAD) at once. This is the first time that two Heartware™ VADs have been implanted in the left and right ventricles anywhere in North America—a “game changer” in the realm of heart assist devices according to Patrick M. McCarthy, MD, chief of the hospital’s Division of Cardiac Surgery and director of the hospital’s Bluhm Cardiovascular Institute.

“The world doesn’t need the artificial heart anymore,” said Dr. McCarthy, who is also the Heller-Sacks Professor of Surgery at Northwestern University Feinberg School of Medicine. “The goal is total support of the heart. This biventricular approach achieves that without cutting out the patient’s own heart, which is what happens with artificial heart implants.”

According to Edwin C. McGee, Jr. MD, surgical director for the Bluhm Institute’s Heart Transplant and Assist Device program and the lead cardiac surgeon who performed the implant, when the patient, 44-year-old James Armstrong, was transferred to Northwestern Memorial just weeks ago, he was near death with an aggressive state of myocarditis. Myocarditis is a severe inflammation of the heart tissue that—in some rare cases—can be fatal when unaddressed.

Only about a dozen times before in Europe had the twin implant of the small Heartware™ VAD been performed, and now the approach would be Armstrong’s best chances for survival. The Heartware™ VAD is under trial in the U.S. as an LVAD. Mr. Armstrong did not qualify for the current trial and was able to have the device implanted under a process known as “emergency use”. Emergency use is defined as the use of an investigational article with a human subject in a life-threatening situation. Although such uses are not yet approved by the U.S. Food and Drug Administration, they are allowed when there is no standard acceptable treatment available and there is not sufficient time to obtain approval from an Institutional Review Board.

“As we do for all of our patients, we wanted the very best for Jim,” said McGee. “Standard BiVAD pumps sit outside of the body and are plagued by an extremely high complication and mortality rate.”

McGee added that another reason to study this system is because the configuration leaves patients’ hearts intact. This, he says, lends itself to the possibility that in some rare cases the heart may actually recover. “Naturally, that remains to be seen—but it’s possible,” he says. This probability is obliterated with artificial hearts because essential components of the natural heart are removed.

McGee adds that one of the greatest advantages to patients is that the pumps are contained (implanted) completely within the chest. There are two small controlling leads in the body that connect to a small monitor and power source outside the body that can be carried in two small shoulder pouches.

“Using this device in a biventricular support configuration may offer total heart support to more individuals with improved quality of life and hopefully fewer complications, than with the currently approved devices,” added McGee.

The American Heart Association estimates that an average of 300,000 people die every year from heart failure—and roughly 10,000 of them qualify for heart transplant. Due to lack of donor organs roughly only 2000 cardiac transplants are performed each year. Assist devices such as the ones Armstrong received are becoming an increasingly important therapy to help individuals with advanced heart failure.

Dr. McGee is a paid consultant for HeartWare™.

Media Contact
Kris Lathan, Director
Northwestern Memorial Hospital
312-926-2963
klathan@nmh.org

Kris Lathan | EurekAlert!
Further information:
http://www.nmh.org/nm/bivad+release

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>