Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-slip tracheal implants

03.07.2012
If a person‘s windpipe is constricted, an operation in which the surgeon inserts a stent to enlarge the trachea is often the only way to relieve their respiratory distress.

But this grid-like implant can slip out of position, closing off the windpipe altogether. Researchers are working on a special surface coating for the stents to keep them in place.


A new protein coating is designed not only to enhance incorporation of respiratory stents in the
surrounding tracheal tissue, but also to lower the risk of infection for patients. (© Leufen Medical GmbH )

When coronary blood vessels are constricted, cardiologists try to prevent a heart attack by widening them with small grid-like implants called stents, which stabilize the veins and arteries, improve the flow of blood and prevent vascular obliteration. A lesser known fact is that stents can be used to treat pathological constriction of the windpipe.

This kind of respiratory stenosis, which may be caused by tumors, chronic infections or congenital deformities, can be life-threatening. The metal or plastic stents are designed to enlarge the trachea and prevent it from closing up altogether.

But complications can arise when the implants are inserted. Firstly, there is the danger that the stents will shift, thus partially or completely obstructing the respiratory tract. Secondly, bacteria can colonize the stents and trigger pneumonia. The reason for this is that the stents have no barrier-forming cells of the kind usually present in the respiratory system, whose task is to fend off bacteria and inhaled substances such as particulate. “The windpipe has an important barrier function, with goblet and cilia cells purifying the inhaled air. It is very important that cells like these can adhere to the stents so as to maintain the air-purifying effect of the damaged section of the windpipe and to promote incorporation of the stents in the surrounding tracheal tissue,” says Dr. Martina Hampel, a scientist at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. Together with Prof. Dr. Thorsten Walles, head of the department of thoracic surgery at the University Hospital of Würzburg and a visiting scientist at the IGB, Dr. Hampel and her team took part in the “REGiNA” project, the goal of which was to develop surface coatings that enable the stents to be incorporated in the surrounding tissue, thus reducing the risk that they will move. REGiNA, a German acronym for Regenerative Medicine in the Neckar-Alb and Stuttgart Region, is funded by the German Federal Ministry of Education and Research BMBF.

Bioactive coatings lower the risk for patients
The scientists used stents lined with a polyurethane (PU) film, which were produced by Aachen-based Leufen Medical GmbH. In the ensuing tests, a wide variety of different coatings were applied to the PU film: In addition to synthetic polymers composed of organic acids, the researchers also tried out biological proteins such as fibronectin and type-I collagen. The coating was modified again using plasma technology, with vacuum-ionized gas being used to treat the surface. The experts used an untreated PU film for control purposes. “In order to find out which of the surface coatings was the most suitable, we brought both lab-cultivated cell lines and human primary tracheal epithelial cells into contact with the films in cell culture vessels. What we wanted, of course, was for the primary respiratory cells from human tissue to attach themselves to the film,” explains Hampel. The researchers achieved their best results with the protein-coated film, on which the primary tracheal epithelial cells grew particularly well and multiplied. “The respiratory cells proved to be more vital on bioactive films rather than on ones treated with plasma. By contrast, polymer-coated film turned out to be completely useless,” says Hampel.

The laboratory tests have since been completed, and animal tests are in preparation. If the good lab results are confirmed in these tests, the next step will be to conduct clinical trials of the modified stents at the Schillerhöhe specialist lung clinic, part of the Robert Bosch Hospital. “We hope that, within just a few years, our well-tolerated, cell-compatible surface coatings will be used for other biomedical prostheses such as pacemaker leads, tooth implants and replacement joints,” says Hampel.

Dr. rer. nat. Martina Hampel | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/non-slip-tracheal-implants.html

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>