Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-slip tracheal implants

03.07.2012
If a person‘s windpipe is constricted, an operation in which the surgeon inserts a stent to enlarge the trachea is often the only way to relieve their respiratory distress.

But this grid-like implant can slip out of position, closing off the windpipe altogether. Researchers are working on a special surface coating for the stents to keep them in place.


A new protein coating is designed not only to enhance incorporation of respiratory stents in the
surrounding tracheal tissue, but also to lower the risk of infection for patients. (© Leufen Medical GmbH )

When coronary blood vessels are constricted, cardiologists try to prevent a heart attack by widening them with small grid-like implants called stents, which stabilize the veins and arteries, improve the flow of blood and prevent vascular obliteration. A lesser known fact is that stents can be used to treat pathological constriction of the windpipe.

This kind of respiratory stenosis, which may be caused by tumors, chronic infections or congenital deformities, can be life-threatening. The metal or plastic stents are designed to enlarge the trachea and prevent it from closing up altogether.

But complications can arise when the implants are inserted. Firstly, there is the danger that the stents will shift, thus partially or completely obstructing the respiratory tract. Secondly, bacteria can colonize the stents and trigger pneumonia. The reason for this is that the stents have no barrier-forming cells of the kind usually present in the respiratory system, whose task is to fend off bacteria and inhaled substances such as particulate. “The windpipe has an important barrier function, with goblet and cilia cells purifying the inhaled air. It is very important that cells like these can adhere to the stents so as to maintain the air-purifying effect of the damaged section of the windpipe and to promote incorporation of the stents in the surrounding tracheal tissue,” says Dr. Martina Hampel, a scientist at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. Together with Prof. Dr. Thorsten Walles, head of the department of thoracic surgery at the University Hospital of Würzburg and a visiting scientist at the IGB, Dr. Hampel and her team took part in the “REGiNA” project, the goal of which was to develop surface coatings that enable the stents to be incorporated in the surrounding tissue, thus reducing the risk that they will move. REGiNA, a German acronym for Regenerative Medicine in the Neckar-Alb and Stuttgart Region, is funded by the German Federal Ministry of Education and Research BMBF.

Bioactive coatings lower the risk for patients
The scientists used stents lined with a polyurethane (PU) film, which were produced by Aachen-based Leufen Medical GmbH. In the ensuing tests, a wide variety of different coatings were applied to the PU film: In addition to synthetic polymers composed of organic acids, the researchers also tried out biological proteins such as fibronectin and type-I collagen. The coating was modified again using plasma technology, with vacuum-ionized gas being used to treat the surface. The experts used an untreated PU film for control purposes. “In order to find out which of the surface coatings was the most suitable, we brought both lab-cultivated cell lines and human primary tracheal epithelial cells into contact with the films in cell culture vessels. What we wanted, of course, was for the primary respiratory cells from human tissue to attach themselves to the film,” explains Hampel. The researchers achieved their best results with the protein-coated film, on which the primary tracheal epithelial cells grew particularly well and multiplied. “The respiratory cells proved to be more vital on bioactive films rather than on ones treated with plasma. By contrast, polymer-coated film turned out to be completely useless,” says Hampel.

The laboratory tests have since been completed, and animal tests are in preparation. If the good lab results are confirmed in these tests, the next step will be to conduct clinical trials of the modified stents at the Schillerhöhe specialist lung clinic, part of the Robert Bosch Hospital. “We hope that, within just a few years, our well-tolerated, cell-compatible surface coatings will be used for other biomedical prostheses such as pacemaker leads, tooth implants and replacement joints,” says Hampel.

Dr. rer. nat. Martina Hampel | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/non-slip-tracheal-implants.html

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>