Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-slip tracheal implants

03.07.2012
If a person‘s windpipe is constricted, an operation in which the surgeon inserts a stent to enlarge the trachea is often the only way to relieve their respiratory distress.

But this grid-like implant can slip out of position, closing off the windpipe altogether. Researchers are working on a special surface coating for the stents to keep them in place.


A new protein coating is designed not only to enhance incorporation of respiratory stents in the
surrounding tracheal tissue, but also to lower the risk of infection for patients. (© Leufen Medical GmbH )

When coronary blood vessels are constricted, cardiologists try to prevent a heart attack by widening them with small grid-like implants called stents, which stabilize the veins and arteries, improve the flow of blood and prevent vascular obliteration. A lesser known fact is that stents can be used to treat pathological constriction of the windpipe.

This kind of respiratory stenosis, which may be caused by tumors, chronic infections or congenital deformities, can be life-threatening. The metal or plastic stents are designed to enlarge the trachea and prevent it from closing up altogether.

But complications can arise when the implants are inserted. Firstly, there is the danger that the stents will shift, thus partially or completely obstructing the respiratory tract. Secondly, bacteria can colonize the stents and trigger pneumonia. The reason for this is that the stents have no barrier-forming cells of the kind usually present in the respiratory system, whose task is to fend off bacteria and inhaled substances such as particulate. “The windpipe has an important barrier function, with goblet and cilia cells purifying the inhaled air. It is very important that cells like these can adhere to the stents so as to maintain the air-purifying effect of the damaged section of the windpipe and to promote incorporation of the stents in the surrounding tracheal tissue,” says Dr. Martina Hampel, a scientist at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart. Together with Prof. Dr. Thorsten Walles, head of the department of thoracic surgery at the University Hospital of Würzburg and a visiting scientist at the IGB, Dr. Hampel and her team took part in the “REGiNA” project, the goal of which was to develop surface coatings that enable the stents to be incorporated in the surrounding tissue, thus reducing the risk that they will move. REGiNA, a German acronym for Regenerative Medicine in the Neckar-Alb and Stuttgart Region, is funded by the German Federal Ministry of Education and Research BMBF.

Bioactive coatings lower the risk for patients
The scientists used stents lined with a polyurethane (PU) film, which were produced by Aachen-based Leufen Medical GmbH. In the ensuing tests, a wide variety of different coatings were applied to the PU film: In addition to synthetic polymers composed of organic acids, the researchers also tried out biological proteins such as fibronectin and type-I collagen. The coating was modified again using plasma technology, with vacuum-ionized gas being used to treat the surface. The experts used an untreated PU film for control purposes. “In order to find out which of the surface coatings was the most suitable, we brought both lab-cultivated cell lines and human primary tracheal epithelial cells into contact with the films in cell culture vessels. What we wanted, of course, was for the primary respiratory cells from human tissue to attach themselves to the film,” explains Hampel. The researchers achieved their best results with the protein-coated film, on which the primary tracheal epithelial cells grew particularly well and multiplied. “The respiratory cells proved to be more vital on bioactive films rather than on ones treated with plasma. By contrast, polymer-coated film turned out to be completely useless,” says Hampel.

The laboratory tests have since been completed, and animal tests are in preparation. If the good lab results are confirmed in these tests, the next step will be to conduct clinical trials of the modified stents at the Schillerhöhe specialist lung clinic, part of the Robert Bosch Hospital. “We hope that, within just a few years, our well-tolerated, cell-compatible surface coatings will be used for other biomedical prostheses such as pacemaker leads, tooth implants and replacement joints,” says Hampel.

Dr. rer. nat. Martina Hampel | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/non-slip-tracheal-implants.html

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>