Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SKINSPECTION – Hybrid Imaging for Skin Diagnosis

08.03.2012
In the context of the SKINSPECTION project, a European consortium has developed a novel multimodal hybrid diagnostic imaging system for the skin with the capability to perform non-invasive high resolution three-dimensional imaging in-vivo.

The incidence of skin cancer in Europe, US and Australia is rising rapidly. One in five will develop some form of skin cancer during the lifetime. A person has a 1:33 chance to develop melanoma, the most aggressive skin cancer.

Melanoma is the second most common cancer in women aged 20-29, and the sixth most common cancer in men and women. In 2007, more than 1 million new cases were diagnosed in the US alone.

About 90% of skin cancers are caused by ultraviolet (UV) sunlight. A significant improvement of the current diagnostic tools of dermatologists is required in order to identify dermal disorders at a very early stage as well as to monitor directly the effects of treatment.

In the context of the SKINSPECTION project, a European consortium has developed a novel multimodal hybrid diagnostic imaging system with the capability to perform non-invasive high resolution three-dimensional imaging in-vivo.

The SKINSPECTION approach combines two-photon imaging with time-correlated single photon detection, autofluorescence lifetime imaging, high-frequency ultrasound and optoacoustic imaging. The innovative combination of these modalities allows to obtain a wide-field view with quantitative depth information of skin lesions and a close-look into particular intra-tissue compartments with quantitative hyperspectral information and subcellular resolution. The goal of the project is to provide a novel unique tool for early diagnosis and treatment control of skin cancer and skin disease.

For achieving this objective, two systems for microscopic and macroscopic imaging of lesions were developed in the last 3 years by the partners JenLab GmbH and Imperial College London (two-photon microscopy/FLIM) and Fraunhofer IBMT (Fraunhofer Institute for Biomedical Engineering) and kibero GmbH (optoacoustic/ultrasound imaging). The systems were successfully certified for clinical studies and are currently being evaluated for imaging of skin lesions in a bicentric clinical trial at Hammersmith Hospital and Universita di Modena.

Contact:

Dr. Marc Fournelle
Biomedical Ultrasound Research
Fraunhofer IBMT
Tel: +49 6894 / 980-220
Fax: +49 6894 / 980-234

Annette Maurer | Fraunhofer-Institut
Further information:
http://www.skinspection-fp7.eu/
http://www.ibmt.fraunhofer.de/en.html
http://www.ibmt.fraunhofer.de/en/Fields-of-work/ibmt-ultrasound/ibmt-biomedical-ultrasound-research.html

More articles from Medical Engineering:

nachricht True to type: From human biopsy to complex gut physiology on a chip
14.02.2018 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht The Scanpy software processes huge amounts of single-cell data
12.02.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>