Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Skin-like' device monitors cardiovascular and skin health


Thousands of liquid crystal data points give portable device its accuracy

A new wearable medical device can quickly alert a person if they are having cardiovascular trouble or if it's simply time to put on some skin moisturizer, reports a Northwestern University and University of Illinois at Urbana-Champaign study.

The small device, approximately five centimeters square, can be placed directly on the skin and worn 24/7 for around-the-clock health monitoring. The wireless technology uses thousands of tiny liquid crystals on a flexible substrate to sense heat. When the device turns color, the wearer knows something is awry.

"Our device is mechanically invisible -- it is ultrathin and comfortable -- much like skin itself," said Northwestern's Yonggang Huang, one of the senior researchers. The research team tested the device on people's wrists.

"One can imagine cosmetics companies being interested in the ability to measure skin's dryness in a portable and non-intrusive way," Huang said. "This is the first device of its kind."

Huang led the portion of the research focused on theory, design and modeling. He is the Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at Northwestern's McCormick School of Engineering and Applied Science.

The technology and its relevance to basic medicine have been demonstrated in this study, although additional testing is needed before the device can be put to use. Details are reported online in the journal Nature Communications.

"The device is very practical -- when your skin is stretched, compressed or twisted, the device stretches, compresses or twists right along with it," said Yihui Zhang, co-first author of the study and research assistant professor of civil and environmental engineering at Northwestern.

The technology uses the transient temperature change at the skin's surface to determine blood flow rate, which is of direct relevance to cardiovascular health, and skin hydration levels. (When skin is dehydrated, the thermal conductivity property changes.)

The device is an array of up to 3,600 liquid crystals, each half a millimeter square, laid out on a thin, soft and stretchable substrate.

When a crystal senses temperature, it changes color, Huang said, and the dense array provides a snapshot of how the temperature is distributed across the area of the device. An algorithm translates the temperature data into an accurate health report, all in less than 30 seconds.

"These results provide the first examples of 'epidermal' photonic sensors," said John A. Rogers, the paper's corresponding author and a Swanlund Chair and professor of materials science and engineering at the University of Illinois. "This technology significantly expands the range of functionality in skin-mounted devices beyond that possible with electronics alone."

Rogers, who also is director of the Seitz Materials Research Laboratory, led the group that worked on the experimental and fabrication work of the device. He is a longtime collaborator of Huang's.

With its 3,600 liquid crystals, the photonic device has 3,600 temperature points, providing sub-millimeter spatial resolution that is comparable to the infrared technology currently used in hospitals.

The infrared technology, however, is expensive and limited to clinical and laboratory settings, while the new device offers low cost and portability.

The device also has a wireless heating system that can be powered by electromagnetic waves present in the air. The heating system is used to determine the thermal properties of the skin.


The title of the paper is "Epidermal Photonic Devices for Quantitative Imaging of Temperature and Thermal Transport Characteristics of the Skin." In addition to Zhang, Li Gao and Viktor Malyarchuk of the University of Illinois at Urbana-Champaign are co-first authors.

Megan Fellman | Eurek Alert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>