Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk-based surgical implants could offer a better way to repair broken bones

05.03.2014

Study shows that devices from silkworm silk are potentially attractive alternatives to metal and synthetic-based systems

When a person suffers a broken bone, treatment calls for the surgeon to insert screws and plates to help bond the broken sections and enable the fracture to heal. These "fixation devices" are usually made of metal alloys.

But metal devices may have disadvantages: Because they are stiff and unyielding, they can cause stress to underlying bone. They also pose an increased risk of infection and poor wound healing. In some cases, the metal implants must be removed following fracture healing, necessitating a second surgery. Resorbable fixation devices, made of synthetic polymers, avoid some of these problems but may pose a risk of inflammatory reactions and are difficult to implant.

Now, using pure silk protein derived from silkworm cocoons, a team of investigators from Tufts University School of Engineering and Beth Israel Deaconess Medical Center (BIDMC) has developed surgical plates and screws that may not only offer improved bone remodeling following injury, but importantly, can also be absorbed by the body over time, eliminating the need for surgical removal of the devices.

The findings, demonstrated in vitro and in a rodent model, are described in the March 4 issue of Nature Communications.

"Unlike metal, the composition of silk protein may be similar to bone composition," says co-senior author Samuel Lin, MD, of the Division of Plastic and Reconstructive Surgery at BIDMC and Associate Professor of Surgery at Harvard Medical School. "Silk materials are extremely robust. They maintain structural stability under very high temperatures and withstand other extreme conditions, and they can be readily sterilized."

Collaborating with Lin were co-senior author and Tufts chair of biomedical engineering David Kaplan, PhD, a leader in the use of silk for biomedical applications, and a team of biomedical and mechanical engineers.

"One of the other big advantages of silk is that it can stabilize and deliver bioactive components, so that plates and screws made of silk could actually deliver antibiotics to prevent infection, pharmaceuticals to enhance bone regrowth and other therapeutics to support healing," says Kaplan.

Kaplan and his team have previously developed silk-based sponges, fibers and foams for use in the operating room and in clinical settings. But until now, silk hadn't been used in the development of a solid medical device for fracture fixation.

The Tufts researchers used silk protein obtained from Bombyx mori (B. mori) silkworm cocoons to form the surgical plates and screws. Produced from the glands of the silkworm, the silk protein is folded in complex ways that give it unique properties of both exceptional strength and versatility.

To test the new devices, the investigators implanted a total of 28 silk-based screws in six laboratory rats. Insertion of screws was straightforward and assessments were then conducted at four weeks and eight weeks, post-implantation.

"No screws failed during implantation," says Kaplan, explaining that because silk is slow to swell, the new devices maintained their mechanical integrity even when coming into contact with fluids and surrounding tissue during surgery. The outcomes suggest that the use of silk plates and screws can spare patients the complications that can develop when metal or synthetic polymer devices come into contact with fluids.

"Having a resorbable, long-lasting plate and screw system has potentially huge applications," says Lin. While the initial aim is to use silk-based screws to treat facial injuries, which occur at a rate of several hundred thousand each year, the devices have the potential for the treatment of a variety of different types of bone fractures.

"Because the silk screws are inherently radiolucent [not seen on X-ray] it may be easier for the surgeon to see how the fracture is progressing during the post-op period, without the impediment of metal devices," adds Lin. "And having an effective system in which screws and plates 'melt away' once the fracture is healed may be of enormous benefit. We're extremely excited to continue this work in larger animal models and ultimately in human clinical trials."

###

In addition to Lin and Kaplan coauthors include Tufts University investigators Gabriel S. Perrone (first author), Gary G. Leisk, Tim J. Lo, Jodie E. Moreau, Dylan S. Haas, Bernke J. Papenburg, Ethan B. Golden and Benjamin P. Partlow, and BIDMC investigators Sharon E. Fox and Ahmed M.S. Ibrahim.

This research was supported by the National Institutes of Health (EB002520).

"The Use of Silk-Based Devices for Fracture Fixation," Gabriel S. Perrone, Gary G. Leisk, Tim J. Lo, Jodie E. Moreau, Dylan S. Haas, Bernke J. Papenburg, Ethan B. Golden, Benjamin P. Partlow,Sharon E. Fox, Ahmed M.S. Ibrahim, Samuel J. Lin, David L. Kaplan, Nature Communications, http://dx.doi.org/10.1038/ncomms4385.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

The BIDMC health care team includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Located on Tufts' Medford/Somerville campus, the Tufts University School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface. For more information, visit http://engineering.tufts.edu.

Bonnie Prescott | EurekAlert!

Further reports about: BIDMC Deaconess Harvard fixation fracture healing implants investigators repair screws silk silkworm

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>