Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silk-based surgical implants could offer a better way to repair broken bones

05.03.2014

Study shows that devices from silkworm silk are potentially attractive alternatives to metal and synthetic-based systems

When a person suffers a broken bone, treatment calls for the surgeon to insert screws and plates to help bond the broken sections and enable the fracture to heal. These "fixation devices" are usually made of metal alloys.

But metal devices may have disadvantages: Because they are stiff and unyielding, they can cause stress to underlying bone. They also pose an increased risk of infection and poor wound healing. In some cases, the metal implants must be removed following fracture healing, necessitating a second surgery. Resorbable fixation devices, made of synthetic polymers, avoid some of these problems but may pose a risk of inflammatory reactions and are difficult to implant.

Now, using pure silk protein derived from silkworm cocoons, a team of investigators from Tufts University School of Engineering and Beth Israel Deaconess Medical Center (BIDMC) has developed surgical plates and screws that may not only offer improved bone remodeling following injury, but importantly, can also be absorbed by the body over time, eliminating the need for surgical removal of the devices.

The findings, demonstrated in vitro and in a rodent model, are described in the March 4 issue of Nature Communications.

"Unlike metal, the composition of silk protein may be similar to bone composition," says co-senior author Samuel Lin, MD, of the Division of Plastic and Reconstructive Surgery at BIDMC and Associate Professor of Surgery at Harvard Medical School. "Silk materials are extremely robust. They maintain structural stability under very high temperatures and withstand other extreme conditions, and they can be readily sterilized."

Collaborating with Lin were co-senior author and Tufts chair of biomedical engineering David Kaplan, PhD, a leader in the use of silk for biomedical applications, and a team of biomedical and mechanical engineers.

"One of the other big advantages of silk is that it can stabilize and deliver bioactive components, so that plates and screws made of silk could actually deliver antibiotics to prevent infection, pharmaceuticals to enhance bone regrowth and other therapeutics to support healing," says Kaplan.

Kaplan and his team have previously developed silk-based sponges, fibers and foams for use in the operating room and in clinical settings. But until now, silk hadn't been used in the development of a solid medical device for fracture fixation.

The Tufts researchers used silk protein obtained from Bombyx mori (B. mori) silkworm cocoons to form the surgical plates and screws. Produced from the glands of the silkworm, the silk protein is folded in complex ways that give it unique properties of both exceptional strength and versatility.

To test the new devices, the investigators implanted a total of 28 silk-based screws in six laboratory rats. Insertion of screws was straightforward and assessments were then conducted at four weeks and eight weeks, post-implantation.

"No screws failed during implantation," says Kaplan, explaining that because silk is slow to swell, the new devices maintained their mechanical integrity even when coming into contact with fluids and surrounding tissue during surgery. The outcomes suggest that the use of silk plates and screws can spare patients the complications that can develop when metal or synthetic polymer devices come into contact with fluids.

"Having a resorbable, long-lasting plate and screw system has potentially huge applications," says Lin. While the initial aim is to use silk-based screws to treat facial injuries, which occur at a rate of several hundred thousand each year, the devices have the potential for the treatment of a variety of different types of bone fractures.

"Because the silk screws are inherently radiolucent [not seen on X-ray] it may be easier for the surgeon to see how the fracture is progressing during the post-op period, without the impediment of metal devices," adds Lin. "And having an effective system in which screws and plates 'melt away' once the fracture is healed may be of enormous benefit. We're extremely excited to continue this work in larger animal models and ultimately in human clinical trials."

###

In addition to Lin and Kaplan coauthors include Tufts University investigators Gabriel S. Perrone (first author), Gary G. Leisk, Tim J. Lo, Jodie E. Moreau, Dylan S. Haas, Bernke J. Papenburg, Ethan B. Golden and Benjamin P. Partlow, and BIDMC investigators Sharon E. Fox and Ahmed M.S. Ibrahim.

This research was supported by the National Institutes of Health (EB002520).

"The Use of Silk-Based Devices for Fracture Fixation," Gabriel S. Perrone, Gary G. Leisk, Tim J. Lo, Jodie E. Moreau, Dylan S. Haas, Bernke J. Papenburg, Ethan B. Golden, Benjamin P. Partlow,Sharon E. Fox, Ahmed M.S. Ibrahim, Samuel J. Lin, David L. Kaplan, Nature Communications, http://dx.doi.org/10.1038/ncomms4385.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

The BIDMC health care team includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Located on Tufts' Medford/Somerville campus, the Tufts University School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface. For more information, visit http://engineering.tufts.edu.

Bonnie Prescott | EurekAlert!

Further reports about: BIDMC Deaconess Harvard fixation fracture healing implants investigators repair screws silk silkworm

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>