Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Siemens mammography system lowers radiation dose up to 30 percent

26.11.2012
Siemens Healthcare is launching the Mammomat Inspiration Prime Edition – the first mammography system that lowers patient dose up to 30 percent without compromising image quality.

The Mammomat Inspiration Prime Edition lowers dose by replacing the standard scatter radiation grid with a new algorithm for progressive image reconstruction. This new algorithm identifies scatter-causing structures and calculates a corrected image, enabling complete use of primary radiation so physicians can achieve high-quality images with less dose. The development of innovative products like the digital full-field Mammomat Inspiration is a goal of the Siemens Healthcare Sector's global "Agenda 2013" initiative.



In digital X-ray breast imaging, radiation passes through the examined breast to a detector. Primary radiation supplies the information needed to produce the X-ray image, while scattered radiation is absorbed by special grids positioned between the breast and the detector. Unfortunately, these scatter grids also absorb part of the all-important primary radiation, forcing physicians to use a higher dose to obtain images of desired quality. Since mammography means regular screening of healthy women, minimizing dose is extremely important.

Siemens' new reconstruction algorithm for the Mammomat Inspiration system – known as Prime (Progressive Reconstruction, Intelligently Minimizing Exposure) – eliminates the need for the conventional scatter radiation grid. The Prime algorithm subsequently corrects the scattered radiation by identifying scatter-causing structures and recalculating the image. The primary radiation that radiologists rely upon remains intact. Therefore, a grid is no longer necessary, and lower doses are sufficient to produce high-quality images. The grid-free imaging technology of the Mammomat Inspiration Prime Edition can reduce radiation dose up to 30 percent compared to its predecessor model, depending on the thickness of the patient's breast tissue.

Shipping the first quarter of 2013, the Mammomat Inspiration Prime Edition is based on the modular Mammomat Inspiration platform for screening, diagnostics, biopsy, and tomosynthesis used by hospitals and physicians' offices since 2007. Facilities have the option of purchasing the basic equipment, upgrading biopsy or tomosynthesis later as the need arises.

The software-driven Mammomat Inspiration Prime Edition demonstrates the innovative power of Siemens Healthcare and meets a goal of the global "Agenda 2013" initiative, which the Siemens Healthcare Sector unveiled in November 2011. The initiative defines plans of action to be implemented within two years in the areas of innovation, competitiveness, regional presence, and human resource development.

The Siemens Healthcare Sector is one of the world's largest suppliers to the healthcare industry and a trendsetter in medical imaging, laboratory diagnostics, medical information technology and hearing aids. Siemens offers its customers products and solutions for the entire range of patient care from a single source – from prevention and early detection to diagnosis, and on to treatment and aftercare. By optimizing clinical workflows for the most common diseases, Siemens also makes healthcare faster, better and more cost-effective. Siemens Healthcare employs some 51,000 employees worldwide and operates around the world. In fiscal year 2012 (to September 30), the Sector posted revenue of 13.6 billion euros and profit of 1.8 billion euros. For further information please visit: http://www.siemens.com/healthcare

The products mentioned here are not commercially available in all countries. Due to regulatory reasons the future availability in any country cannot be guaranteed. Further details are available from the local Siemens organizations.

Tomosynthesis is not available in the U.S.

Reference Number: HCP201211004e

Contact
Ms. Kathrin Schmich
Healthcare Sector
Siemens AG
Henkestr. 127
91052 Erlangen
Germany
Tel: +49 (9131) 84-5337
kathrin.schmich@siemens.com

Kathrin Schmich | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>