Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Off-the-shelf cancer detection

25.06.2010
Consumer-grade camera detects cancer cells in real time

Using an off-the-shelf digital camera, Rice University biomedical engineers and researchers from the University of Texas M.D. Anderson Cancer Center have created an inexpensive device that is powerful enough to let doctors easily distinguish cancerous cells from healthy cells simply by viewing the LCD monitor on the back of the camera.

The results of the first tests of the camera were published online this week in the open-access journal PLoS ONE.

"Consumer-grade cameras can serve as powerful platforms for diagnostic imaging," said Rice's Rebecca Richards-Kortum, the study's lead author. "Based on portability, performance and cost, you could make a case for using them both to lower health care costs in developed countries and to provide services that simply aren't available in resource-poor countries."

Richards-Kortum is Rice's Stanley C. Moore Professor of Bioengineering, professor of electrical and computer engineering and the founder of Rice's global health initiative, Rice 360°. Her Optical Spectroscopy and Imaging Laboratory specializes in tools for the early detection of cancer and other diseases. Her team has developed fluorescent dyes and targeted nanoparticles that let doctors zero in on the molecular hallmarks of cancer.

In the new study, the team captured images of cells with a small bundle of fiber-optic cables attached to a $400 Olympus E-330 camera. When imaging tissues, Richards-Kortum's team applied a common fluorescent dye that caused cell nuclei in the samples to glow brightly when lighted with the tip of the fiber-optic bundle. Three tissue types were tested: cancer cell cultures that were grown in a lab, tissue samples from newly resected tumors and healthy tissue viewed in the mouths of patients.

Because the nuclei of cancerous and precancerous cells are notably distorted from those of healthy cells, Richards-Kortum said, abnormal cells were easily identifiable, even on the camera's small LCD screen.

"The dyes and visual techniques that we used are the same sort that pathologists have used for many years to distinguish healthy cells from cancerous cells in biopsied tissue," said study co-author Mark Pierce, Rice faculty fellow in bioengineering. "But the tip of the imaging cable is small and rests lightly against the inside the cheek, so the procedure is considerably less painful than a biopsy and the results are available in seconds instead of days."

Richards-Kortum said software could be written that would allow medical professionals who are not pathologists to use the device to distinguish healthy from nonhealthy cells. The device could then be used for routine cancer screening and to help oncologists track how well patients were responding to treatment.

"A portable, battery-powered device like this could be particularly useful for global health," she said. "This could save many lives in countries where conventional diagnostic technology is simply too expensive."

Co-authors of the paper include Dongsuk Shin and Mark Pierce, both of Rice, and Ann Gillenwater and Michelle Williams, both of the University of Texas M.D. Anderson Cancer Center. The research was funded by the National Institutes of Health.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Medical Engineering:

nachricht 3-D visualization of the pancreas -- new tool in diabetes research
15.03.2017 | Umea University

nachricht New PET radiotracer identifies inflammation in life-threatening atherosclerosis
02.03.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>