Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive ultrasound to spot early-stage cancer

24.10.2008
European researchers have developed highly sensitive ultrasound equipment that can detect tiny quantities of reflective microbubbles engineered to stick to specific tumour cells. The technique should pick up tumours early and improve patients' chances of survival.

Most of the current diagnostic methods – biopsy analysis, biochemical tests and medical imaging – are not sufficiently sensitive. They frequently return a false negative; the tumour is only discovered when it is much bigger, and too late.

European researchers are developing a new technique that will help medical professionals visualise tiny quantities of pathological tissue in patients. The technology could localise tumours in their very earliest stages of development and help doctors begin treatments much earlier, giving patients a much better chance of survival.

The new approach uses medical ultrasound, a safe technology most commonly used for pre-natal visualisation of the foetus and the imaging of other soft tissues. A probe sends high-frequency acoustic waves into the body and detects how they bounce off the interfaces between different tissues.

To improve the sensitivity of this imaging technique, a sonographer may sometimes inject a so-called contrast agent into patients, which greatly increases the scattering of the acoustic waves back to the probe. For ultrasound imaging, contrast agents are based on ‘microbubbles’, micron-sized gas-filled balls that show up brightly on the ultrasound image.

Researchers in the EU-funded TAMIRUT project have developed a microbubble medium that can specifically target and bind to certain pathogenic cells in the body (such as endothelial cells of vessels lining the tumours). Combined with enhanced ultrasound equipment and signal processing capabilities, the system can detect where microbubbles adhere to target cells, and reveal the presence of early-stage tumours.

Working with the pharmaceutical company Bracco Research S.A. in Switzerland, TAMIRUT researchers have developed a way to attach antibodies onto the surface of microbubbles. By selecting an antibody with an affinity for marker molecules found only on target vascular cells, the microbubbles ‘stick’ only to the target cells.

But it is not easy to pick up these hotspots on a scan. “We are looking at the very earliest stages of tumour growth, so there are not many cells present expressing the marker of interest,” explains Alessandro Nencioni who coordinated the project.

“There may be only three or four microbubbles adhered to a site and current ultrasound equipment is not able to pick these up. Work on the hardware and signal processing is an essential aspect of this project as we seek to develop next-generation ultrasound imaging capabilities.”

Strong signals

Esaote, an Italian manufacturer of medical imaging equipment, is working with several research partners and two SMEs: Vermon, a French manufacturer of medical imaging probes, and SignalGeneriX, a small firm based in Cyprus with expertise in signal processing. Their aim is to produce a scanner and a dedicated probe that can transmit and receive ultrasound waves across a wide range of frequencies and wave forms in order to exploit (without any modification) the harmonic components caused by nonlinear scattering of the acoustic wave of the microbubbles.

The scanning equipment must have sufficient processing power to interpret the waves picked up by the probe, update the live image and adjust the transmitted waveforms in real time. Their detecting function is ensured by a specifically developed signal processing methods, able to detect a very limited number of microbubbles (down to a single bubble), to estimate their concentration, and to track their behaviour to get the diagnostic answer searched.

Originally, the project partners thought it would be possible to differentiate between bound and unbound microbubbles by the way they scatter particular ultrasound frequencies and wave forms. However, extensive simulations and laboratory testing have shown that this turns out to be very difficult. Instead, the scientists found a very simple answer: after 10 minutes, the microbubbles that are attached to target cells remain in place while the free microbubbles diffuse away.

The new probe will detect and calculate their local concentration and operators will be able to visualise any areas of high microbubble density within an entire organ. The repetition of this new imaging technique over time could help medical staff to assess the evolution of a tumour, especially its vascularisation.

Using the engineered, targeted microbubble contrast agent, the improved ultrasound hardware and the signal processing, the TAMIRUT team has already demonstrated in simulations the potential of this approach for the early detection of prostate cancer.

“Our approach goes a long way to eliminating or strongly reducing the problem of false-negative diagnosis,” says Nencioni, “offering a second degree of evaluation after blood test screening. It is sensitive, specific and you are able to examine the whole organ, which is not possible by biopsy.”

This ultrasound method improves accuracy, patient comfort and costs around half that of a biopsy. It could save European healthcare providers up to €250 million each year in biopsy costs alone.

The need for clinical trials of the targeted contrast agent and subsequent approval in humans means that the targeted microbubble agent is unlikely to be available for at least three years. But the improved signal processing algorithms will help to increase the sensitivity of ultrasound equipment, irrespective of the use of these microbubbles.

Esaote is working with the other commercial partners to incorporate the new signal processing features into its medical imaging equipment by the end of 2009.

TAMIRUT project received funding from the ICT strand of the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90119

More articles from Medical Engineering:

nachricht Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms
18.08.2017 | Cedars-Sinai Medical Center

nachricht Water-filtered infrared-A (wIRA) overcomes swallowing disorders and hypersalivation – a case report
10.08.2017 | Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>