Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensitive ultrasound to spot early-stage cancer

24.10.2008
European researchers have developed highly sensitive ultrasound equipment that can detect tiny quantities of reflective microbubbles engineered to stick to specific tumour cells. The technique should pick up tumours early and improve patients' chances of survival.

Most of the current diagnostic methods – biopsy analysis, biochemical tests and medical imaging – are not sufficiently sensitive. They frequently return a false negative; the tumour is only discovered when it is much bigger, and too late.

European researchers are developing a new technique that will help medical professionals visualise tiny quantities of pathological tissue in patients. The technology could localise tumours in their very earliest stages of development and help doctors begin treatments much earlier, giving patients a much better chance of survival.

The new approach uses medical ultrasound, a safe technology most commonly used for pre-natal visualisation of the foetus and the imaging of other soft tissues. A probe sends high-frequency acoustic waves into the body and detects how they bounce off the interfaces between different tissues.

To improve the sensitivity of this imaging technique, a sonographer may sometimes inject a so-called contrast agent into patients, which greatly increases the scattering of the acoustic waves back to the probe. For ultrasound imaging, contrast agents are based on ‘microbubbles’, micron-sized gas-filled balls that show up brightly on the ultrasound image.

Researchers in the EU-funded TAMIRUT project have developed a microbubble medium that can specifically target and bind to certain pathogenic cells in the body (such as endothelial cells of vessels lining the tumours). Combined with enhanced ultrasound equipment and signal processing capabilities, the system can detect where microbubbles adhere to target cells, and reveal the presence of early-stage tumours.

Working with the pharmaceutical company Bracco Research S.A. in Switzerland, TAMIRUT researchers have developed a way to attach antibodies onto the surface of microbubbles. By selecting an antibody with an affinity for marker molecules found only on target vascular cells, the microbubbles ‘stick’ only to the target cells.

But it is not easy to pick up these hotspots on a scan. “We are looking at the very earliest stages of tumour growth, so there are not many cells present expressing the marker of interest,” explains Alessandro Nencioni who coordinated the project.

“There may be only three or four microbubbles adhered to a site and current ultrasound equipment is not able to pick these up. Work on the hardware and signal processing is an essential aspect of this project as we seek to develop next-generation ultrasound imaging capabilities.”

Strong signals

Esaote, an Italian manufacturer of medical imaging equipment, is working with several research partners and two SMEs: Vermon, a French manufacturer of medical imaging probes, and SignalGeneriX, a small firm based in Cyprus with expertise in signal processing. Their aim is to produce a scanner and a dedicated probe that can transmit and receive ultrasound waves across a wide range of frequencies and wave forms in order to exploit (without any modification) the harmonic components caused by nonlinear scattering of the acoustic wave of the microbubbles.

The scanning equipment must have sufficient processing power to interpret the waves picked up by the probe, update the live image and adjust the transmitted waveforms in real time. Their detecting function is ensured by a specifically developed signal processing methods, able to detect a very limited number of microbubbles (down to a single bubble), to estimate their concentration, and to track their behaviour to get the diagnostic answer searched.

Originally, the project partners thought it would be possible to differentiate between bound and unbound microbubbles by the way they scatter particular ultrasound frequencies and wave forms. However, extensive simulations and laboratory testing have shown that this turns out to be very difficult. Instead, the scientists found a very simple answer: after 10 minutes, the microbubbles that are attached to target cells remain in place while the free microbubbles diffuse away.

The new probe will detect and calculate their local concentration and operators will be able to visualise any areas of high microbubble density within an entire organ. The repetition of this new imaging technique over time could help medical staff to assess the evolution of a tumour, especially its vascularisation.

Using the engineered, targeted microbubble contrast agent, the improved ultrasound hardware and the signal processing, the TAMIRUT team has already demonstrated in simulations the potential of this approach for the early detection of prostate cancer.

“Our approach goes a long way to eliminating or strongly reducing the problem of false-negative diagnosis,” says Nencioni, “offering a second degree of evaluation after blood test screening. It is sensitive, specific and you are able to examine the whole organ, which is not possible by biopsy.”

This ultrasound method improves accuracy, patient comfort and costs around half that of a biopsy. It could save European healthcare providers up to €250 million each year in biopsy costs alone.

The need for clinical trials of the targeted contrast agent and subsequent approval in humans means that the targeted microbubble agent is unlikely to be available for at least three years. But the improved signal processing algorithms will help to increase the sensitivity of ultrasound equipment, irrespective of the use of these microbubbles.

Esaote is working with the other commercial partners to incorporate the new signal processing features into its medical imaging equipment by the end of 2009.

TAMIRUT project received funding from the ICT strand of the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90119

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>