Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-learning software for better medical diagnoses

02.02.2016

Together with Dutch researchers, Fraunhofer MEVIS is starting a project in which computer recognizes suspicious abnormalities in medical image data

MRI, CT, pathology: doctors have to consider medical image data –increasing in both amount and complexity – to perform diagnoses and monitor therapy. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen is creating a new approach to provide effective assistance.


Deep learning algorithms autonomously find interesting spots in new digital images of tissue samples based on an automated analysis. Starting with the highest resolution, these neuronal networks compress the data until information and image interpretations emerge. They help doctors perform faster and safer diagnoses. When doctors correct the computer diagnosis, new knowledge flows in the self-learning algorithm.

In the recently started AMI project (Automation in Medical Imaging), self-learning computer algorithms will automatically trawl large volumes of data and search for abnormalities to improve the accuracy of computer-generated diagnoses. MEVIS has partnered with the Radboud University in Nijmegen, the Netherlands, which hosts one of the world’s leading research groups for automated image evaluation.

“These deep learning algorithms especially show their strengths when enormous amounts of data have to be processed,” says MEVIS researcher Markus Harz. Such volumes of data accumulate when high-risk patients are screened repeatedly over long time periods. For analysis, doctors must recognize fine differences between newer and older images to detect early-stage tumors.

“These differences in the images often express themselves as slightly varying gray-scale values,” explains Harz. “Computers can perfectly detect such changes in shape, gray-scale value, or texture. A computer can even sift out the crucial changes itself.” It can disregard all cases that show no difference between older and newer images. Doctors would only have to consider cases in which potentially suspicious changes can be seen.

Experts from all over the world are developing promising computer algorithms for automated image recognition and diagnosis. However, many projects run the risk of ending in early research stages. Acquiring approval from respective authorities often presents difficulties. “Researchers have to prove that new methods are reliable and that their diagnostic statements can be scientifically verified,” explains Harz. “With the AMI project, we want to close some gaps on the way to approval and develop computer algorithms that are far easier to certify.”

To prove the capabilities of these self-learning programs, researchers want to compare them to real medical data continuously. This data originates in the clinic in Nijmegen and will soon come from clinics all over the world. Doctors mark important diagnostic details in the data with machine-readable annotations.

With the help of these annotations, software developers can check the reliability and precision of their programs when analyzing medical image data. The researchers can integrate those programs in the clinical workflow and discover to which extent the automatization is helpful. “With this close cooperation between physicians and developers, we want to develop reliable, powerful programs that will gain acceptance among doctors,” says Harz. “The more computers learn to decide independently, the more important it is to develop efficient interfaces with people.”

The AMI team aims to develop the new approach based on three concrete examples:

• Follow-up of cancer patients: People with increased risk of lung cancer are regularly examined with a yearly lung CT scan. Automated algorithms to detect possible lung cancers and compare the images from different years and search for suspicious changes in tissue have already been developed by both partners. The AMI project aims at refining and adapting this software to measure and quantify tumors and monitor treatment response in cancer patients for lung cancer and other types of tumors.

• Ophthalmology: Effective treatment for the most common retinal diseases (AMD, DR) highly depends on a careful monitoring of retinal changes and an objective decision for retreatment. To achieve this, patients are regularly examined with different imaging modalities, such as OCT or color fundus images, which generates enormous amounts of data and increases the clinical workload. With the help of the latest pattern recognition methods, a computer could automatically analyze the generated images and precisely measure changes. The goal is to create the first multimodal ophthalmology computer workstation.

• Digital pathology: The microscopic analysis of tissue sections of regional lymph nodes in cancer patients helps decide upon the most suitable treatment plan. Tissue sections containing metastases (sometimes as small as 0.2mm in diameter) indicate a significantly less favorable prognosis. A computer could analyze the digitized high-resolution tissue sections and find even the tiniest micrometastases.

“In all three application fields, we want the computer to be technically able to make diagnostic decisions by itself,” explains Markus Harz. “However, doctors will always receive a report enabling them to retrace the decision-making process in detail and make corrections if necessary.” As for the goals of AMI: The researchers want to create a process that facilitates the development of self-learning programs. The software components developed in the project should be easy to incorporate into common medical technology software systems.

AMI stands for “Automation in Medical Imaging.” The project, planned for three years, commenced in October 2015 with a project volume of two million euro. AMI is an undertaking of the ICON initiative, in which the Fraunhofer-Gesellschaft promotes close collaboration between its institutes and foreign research facilities. Project partners of Fraunhofer MEVIS in AMI are the Diagnostic Image Analysis Group of Prof. Dr. Bram van Ginneken and participating clinical workgroups at the Radboud University Medical Center in Nijmegen, the Netherlands.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/selbstlernende-soft...

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>