Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-learning software for better medical diagnoses

02.02.2016

Together with Dutch researchers, Fraunhofer MEVIS is starting a project in which computer recognizes suspicious abnormalities in medical image data

MRI, CT, pathology: doctors have to consider medical image data –increasing in both amount and complexity – to perform diagnoses and monitor therapy. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen is creating a new approach to provide effective assistance.


Deep learning algorithms autonomously find interesting spots in new digital images of tissue samples based on an automated analysis. Starting with the highest resolution, these neuronal networks compress the data until information and image interpretations emerge. They help doctors perform faster and safer diagnoses. When doctors correct the computer diagnosis, new knowledge flows in the self-learning algorithm.

In the recently started AMI project (Automation in Medical Imaging), self-learning computer algorithms will automatically trawl large volumes of data and search for abnormalities to improve the accuracy of computer-generated diagnoses. MEVIS has partnered with the Radboud University in Nijmegen, the Netherlands, which hosts one of the world’s leading research groups for automated image evaluation.

“These deep learning algorithms especially show their strengths when enormous amounts of data have to be processed,” says MEVIS researcher Markus Harz. Such volumes of data accumulate when high-risk patients are screened repeatedly over long time periods. For analysis, doctors must recognize fine differences between newer and older images to detect early-stage tumors.

“These differences in the images often express themselves as slightly varying gray-scale values,” explains Harz. “Computers can perfectly detect such changes in shape, gray-scale value, or texture. A computer can even sift out the crucial changes itself.” It can disregard all cases that show no difference between older and newer images. Doctors would only have to consider cases in which potentially suspicious changes can be seen.

Experts from all over the world are developing promising computer algorithms for automated image recognition and diagnosis. However, many projects run the risk of ending in early research stages. Acquiring approval from respective authorities often presents difficulties. “Researchers have to prove that new methods are reliable and that their diagnostic statements can be scientifically verified,” explains Harz. “With the AMI project, we want to close some gaps on the way to approval and develop computer algorithms that are far easier to certify.”

To prove the capabilities of these self-learning programs, researchers want to compare them to real medical data continuously. This data originates in the clinic in Nijmegen and will soon come from clinics all over the world. Doctors mark important diagnostic details in the data with machine-readable annotations.

With the help of these annotations, software developers can check the reliability and precision of their programs when analyzing medical image data. The researchers can integrate those programs in the clinical workflow and discover to which extent the automatization is helpful. “With this close cooperation between physicians and developers, we want to develop reliable, powerful programs that will gain acceptance among doctors,” says Harz. “The more computers learn to decide independently, the more important it is to develop efficient interfaces with people.”

The AMI team aims to develop the new approach based on three concrete examples:

• Follow-up of cancer patients: People with increased risk of lung cancer are regularly examined with a yearly lung CT scan. Automated algorithms to detect possible lung cancers and compare the images from different years and search for suspicious changes in tissue have already been developed by both partners. The AMI project aims at refining and adapting this software to measure and quantify tumors and monitor treatment response in cancer patients for lung cancer and other types of tumors.

• Ophthalmology: Effective treatment for the most common retinal diseases (AMD, DR) highly depends on a careful monitoring of retinal changes and an objective decision for retreatment. To achieve this, patients are regularly examined with different imaging modalities, such as OCT or color fundus images, which generates enormous amounts of data and increases the clinical workload. With the help of the latest pattern recognition methods, a computer could automatically analyze the generated images and precisely measure changes. The goal is to create the first multimodal ophthalmology computer workstation.

• Digital pathology: The microscopic analysis of tissue sections of regional lymph nodes in cancer patients helps decide upon the most suitable treatment plan. Tissue sections containing metastases (sometimes as small as 0.2mm in diameter) indicate a significantly less favorable prognosis. A computer could analyze the digitized high-resolution tissue sections and find even the tiniest micrometastases.

“In all three application fields, we want the computer to be technically able to make diagnostic decisions by itself,” explains Markus Harz. “However, doctors will always receive a report enabling them to retrace the decision-making process in detail and make corrections if necessary.” As for the goals of AMI: The researchers want to create a process that facilitates the development of self-learning programs. The software components developed in the project should be easy to incorporate into common medical technology software systems.

AMI stands for “Automation in Medical Imaging.” The project, planned for three years, commenced in October 2015 with a project volume of two million euro. AMI is an undertaking of the ICON initiative, in which the Fraunhofer-Gesellschaft promotes close collaboration between its institutes and foreign research facilities. Project partners of Fraunhofer MEVIS in AMI are the Diagnostic Image Analysis Group of Prof. Dr. Bram van Ginneken and participating clinical workgroups at the Radboud University Medical Center in Nijmegen, the Netherlands.

Weitere Informationen:

http://www.mevis.fraunhofer.de/en/news/press-release/article/selbstlernende-soft...

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>