Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Self-learning software for better medical diagnoses


Together with Dutch researchers, Fraunhofer MEVIS is starting a project in which computer recognizes suspicious abnormalities in medical image data

MRI, CT, pathology: doctors have to consider medical image data –increasing in both amount and complexity – to perform diagnoses and monitor therapy. The Fraunhofer Institute for Medical Image Computing MEVIS in Bremen is creating a new approach to provide effective assistance.

Deep learning algorithms autonomously find interesting spots in new digital images of tissue samples based on an automated analysis. Starting with the highest resolution, these neuronal networks compress the data until information and image interpretations emerge. They help doctors perform faster and safer diagnoses. When doctors correct the computer diagnosis, new knowledge flows in the self-learning algorithm.

In the recently started AMI project (Automation in Medical Imaging), self-learning computer algorithms will automatically trawl large volumes of data and search for abnormalities to improve the accuracy of computer-generated diagnoses. MEVIS has partnered with the Radboud University in Nijmegen, the Netherlands, which hosts one of the world’s leading research groups for automated image evaluation.

“These deep learning algorithms especially show their strengths when enormous amounts of data have to be processed,” says MEVIS researcher Markus Harz. Such volumes of data accumulate when high-risk patients are screened repeatedly over long time periods. For analysis, doctors must recognize fine differences between newer and older images to detect early-stage tumors.

“These differences in the images often express themselves as slightly varying gray-scale values,” explains Harz. “Computers can perfectly detect such changes in shape, gray-scale value, or texture. A computer can even sift out the crucial changes itself.” It can disregard all cases that show no difference between older and newer images. Doctors would only have to consider cases in which potentially suspicious changes can be seen.

Experts from all over the world are developing promising computer algorithms for automated image recognition and diagnosis. However, many projects run the risk of ending in early research stages. Acquiring approval from respective authorities often presents difficulties. “Researchers have to prove that new methods are reliable and that their diagnostic statements can be scientifically verified,” explains Harz. “With the AMI project, we want to close some gaps on the way to approval and develop computer algorithms that are far easier to certify.”

To prove the capabilities of these self-learning programs, researchers want to compare them to real medical data continuously. This data originates in the clinic in Nijmegen and will soon come from clinics all over the world. Doctors mark important diagnostic details in the data with machine-readable annotations.

With the help of these annotations, software developers can check the reliability and precision of their programs when analyzing medical image data. The researchers can integrate those programs in the clinical workflow and discover to which extent the automatization is helpful. “With this close cooperation between physicians and developers, we want to develop reliable, powerful programs that will gain acceptance among doctors,” says Harz. “The more computers learn to decide independently, the more important it is to develop efficient interfaces with people.”

The AMI team aims to develop the new approach based on three concrete examples:

• Follow-up of cancer patients: People with increased risk of lung cancer are regularly examined with a yearly lung CT scan. Automated algorithms to detect possible lung cancers and compare the images from different years and search for suspicious changes in tissue have already been developed by both partners. The AMI project aims at refining and adapting this software to measure and quantify tumors and monitor treatment response in cancer patients for lung cancer and other types of tumors.

• Ophthalmology: Effective treatment for the most common retinal diseases (AMD, DR) highly depends on a careful monitoring of retinal changes and an objective decision for retreatment. To achieve this, patients are regularly examined with different imaging modalities, such as OCT or color fundus images, which generates enormous amounts of data and increases the clinical workload. With the help of the latest pattern recognition methods, a computer could automatically analyze the generated images and precisely measure changes. The goal is to create the first multimodal ophthalmology computer workstation.

• Digital pathology: The microscopic analysis of tissue sections of regional lymph nodes in cancer patients helps decide upon the most suitable treatment plan. Tissue sections containing metastases (sometimes as small as 0.2mm in diameter) indicate a significantly less favorable prognosis. A computer could analyze the digitized high-resolution tissue sections and find even the tiniest micrometastases.

“In all three application fields, we want the computer to be technically able to make diagnostic decisions by itself,” explains Markus Harz. “However, doctors will always receive a report enabling them to retrace the decision-making process in detail and make corrections if necessary.” As for the goals of AMI: The researchers want to create a process that facilitates the development of self-learning programs. The software components developed in the project should be easy to incorporate into common medical technology software systems.

AMI stands for “Automation in Medical Imaging.” The project, planned for three years, commenced in October 2015 with a project volume of two million euro. AMI is an undertaking of the ICON initiative, in which the Fraunhofer-Gesellschaft promotes close collaboration between its institutes and foreign research facilities. Project partners of Fraunhofer MEVIS in AMI are the Diagnostic Image Analysis Group of Prof. Dr. Bram van Ginneken and participating clinical workgroups at the Radboud University Medical Center in Nijmegen, the Netherlands.

Weitere Informationen:

Bianka Hofmann | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>