Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing your true colors: Standards for hyperspectral imaging

02.07.2014

Today, doctors who really want to see if a wound is healing have to do a biopsy or some other invasive technique that, besides injuring an already injured patient, can really only offer information about a small area.

But a technology called hyperspectral imaging offers doctors a noninvasive, painless way to discriminate between healthy and diseased tissue and reveal how well damaged tissue is healing over a wide area. The catch? A lack of calibration standards is impeding its use.


NIST researchers are gathering skin reflectance data to establish the variation found in human tissue in order to develop reference standards for hyperspectral imaging applications. The top image shows skin as normally viewed. At bottom are the same images with enhanced contrast in false color to show the variability between subjects.

Credit: Cooksey, Allen/NIST

After a successful non-human trial, researchers at the National Institute of Standards and Technology (NIST) have started gathering data on how human skin looks under various wavelengths of light in order to develop these badly needed standards.*

Unlike consumer digital cameras and the human eye, which only see red, green and blue light, a relatively narrow portion of the electromagnetic spectrum, each pixel of a hyperspectral image captures information for hundreds of narrow spectral bands—from the ultraviolet to the infrared.

According to NIST researcher David Allen, being sensitive to so many wavelengths means hyperspectral imagers can see many different things that humans can't see, including the amount of oxygen in human tissues, an indicator of healing.

"The potential of the technology has been proven, but the problem is that researchers are simply lacking a way to assure consistent results between labs," says Allen. "Standards development has itself been hindered by a lack of human skin reflectance data, especially in the ultraviolet and short-wave infrared."

Catherine Cooksey, the project leader for the spectrophotometry program that establishes and maintains the national scale of reflectance, says that before we delve into what diseased tissue looks like hyperspectrally, we need to know what so-called "normal" tissue looks like.

Furthermore, she says that they are looking to quantify the variability both within an individual and between individuals due to inherent biological differences. The initial NIST studies used 28 volunteer test subjects. The data collected included a photograph of the test area on the subject's forearm and three reflectance measurements of the test area.

"Skin reflectance varies due to skin pigmentation, tissue density, lipid content and blood volume changes," says Cooksey. "And few, if any, studies of skin reflectance have been done with an estimated measurement uncertainty that is traceable to NIST or any other national metrology institute. We need good data from a wide variety of sources, and for that we need the help of our colleagues in the community."

Once they collect enough data, the NIST researchers can feed it into NIST's Hyperspectral Image Projector, a device that creates hyperspectral scenes that have all the spectral signatures of the real thing—in this case, tissue in various stages of repair. Medical imaging technicians can then use these "digital tissue phantoms" to test their imagers' ability to discern among and detect different tissue types and conditions.

###

Those interested in helping to gather skin reflectance data should contact Allen (dwallen@nist.gov) or Cooksey (catherine.cooksey@nist.gov) or more information.

*C.C. Cooksey, B.K. Tsai and D.W. Allen. "A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range." Presented at the SPIE Defense, Security & Sensing Conference, June 4, 2014, Baltimore, Md.

Mark Esser | Eurek Alert!

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>