Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Achieve Highest-Resolution MRI of A Magnet

12.08.2010
In a development that holds potential for both data storage and biomedical imaging, Ohio State University researchers have used a new technique to obtain the highest-ever resolution MRI scan of the inside of a magnet.

Chris Hammel, Ohio Eminent Scholar in Experimental Physics, and his colleagues took a tiny magnetic disk -- measuring only 2 micrometers (millionths of a meter) across and 40 nanometers (billionths of a meter) thick – and were able to obtain magnetic resonance images its interior.

The resulting image -- with each “pixel” one tenth the size of the disk itself -- is the highest-resolution image ever taken of the magnetic fields and interactions inside of a magnet.

Why look inside magnets? Because studying the material’s behavior at these tiny scales is key to incorporating them into computer chips and other electronic devices.

The researchers report their findings in the August 12 issue of the journal Nature.

In 2008, Hammel’s team debuted a new kind of high-resolution scanning system that combines three different kinds of technology: MRI, ferromagnetic resonance, and atomic force microscopy.

Ferromagnets -- the type of magnet used in this study -- are magnets made of ferrous metal such as iron. Common household refrigerator magnets are ferromagnets.

Because ferromagnets retain a particular polarization once magnetized, they are already essential components in today’s computers and other electronics, where they provide data storage alongside computer chips. But smaller magnets built directly into a computer chip could do even more, Hammel explained.

“We know that shrinking these magnets to the nanoscale and building them directly inside electronics would enable these devices to do more, and with less power consumption,” Hammel said. “But a key barrier has always been the difficulty of imaging and characterizing nanomagnets.”

Typical MRI machines work by inducing a magnetic field inside non-magnetic objects, such as the body. Since ferromagnets are already magnetic, conventional MRI can’t see inside them.

The combination technique that the Ohio State researchers invented is called “scanned probe ferromagnetic resonance imaging,” or scanned probe FMRI, and it involves detecting a magnetic signal using a tiny silicon bar with an even tinier magnetic probe on its tip.

In Nature, they report a successful demonstration of the technique, as they imaged the inside of the magnetic disk 0.2 micrometers (200 nanometers) at a time. They used a thin film of a commercially available nickel-iron magnetic alloy called Permalloy for the disk.

“In essence, we were able to conduct ferromagnetic resonance measurements on a small fraction of the disk, then move our probe over a little bit and do magnetic resonance there, and so on,” explained Denis Pelekhov, director of the ENCOMM NanoSystems Laboratory at Ohio State. “Using these results, we could see how the magnetic properties vary inside the disk.”

Experts suspect that computer chips equipped with tiny magnets might one day provide high-density data storage. Computers with magnets in their central processing units (CPUs) would never have to boot up. The entire computer would be contained inside the CPU, making such devices even smaller and less power-hungry as well.

Hammel believes that the technique could one day be useful tool in biomedical research labs. Researchers could use it to study tissue samples of the plaques that form in brain tissues and arteries, and perhaps develop better ways of detecting them in the body. Knowing how these plaques form could advance studies of many diseases, including Alzheimer's and atherosclerosis.

Hammel and Pelekhov’s co-authors on the paper include Inhee Lee, Yuri Obukhov, Gang Xiang,, Adam Hauser, Fengyuan Yang, and Palash Banerjee, all of the Department of Physics at Ohio State.

This research was funded by the Department of Energy.

Chris Hammel | Newswise Science News
Further information:
http://www.osu.edu

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>