Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


SCAN: Delivering bone disorder diagnosis, fracture healing

The fight against bone disorders that affect millions of Americans will soon receive a boost from an ultrasound device being developed by space biomedical researchers. The technology under development will allow early prediction of bone disorders such as osteoporosis and guided acceleration of fracture healing.
National Space Biomedical Research Institute (NSBRI) scientists are developing the technology to assist astronauts during long-duration spaceflights. Like the elderly on Earth, astronauts in space lose bone structure and quality.

Dr. Yi-Xian Qin, associate team leader for NSBRI’s Smart Medical Systems and Technology Team, calls the new technology Scanning Confocal Acoustic Navigation (SCAN). He said the objective is to develop a small, mobile device that is easy to use and patient friendly.

“SCAN uses non-invasive and non-destructive ultrasound to image bone. It will allow us to identify weak regions, to make a diagnosis and to assist in healing fractures,” said Qin, who is also the director of the Orthopaedic Bioengineering Research Laboratory at Stony Brook University - State University of New York.

Stress-related fractures are a big concern for astronauts during long missions to the moon or in space. Qin said the fracture rate could be high on the moon due to workload force, heavy spacesuits and gravity that is one-sixth of Earth’s.

The researchers are developing the new technology using scanning confocal acoustic diagnostic imaging for diagnosis and low-intensity pulsed ultrasound technology for treatment. Compared to current diagnostic ultrasound scanners, Qin’s new technology is more advanced because of its ability to assess a higher number of parameters and is designed for imaging of hard tissue such as bone.

“Our new ultrasound technology can detect bone mineral density. In addition, we can assess bone quality, such as stiffness, and then predict the risk of fracture,” Qin said. “Overall bone quality assessment, including strength and structure, is essential because the risk of fracture is probably more related to the quality of a bone rather than the density of a bone alone.”

On Earth, X-ray machines are the standard tools of choice for monitoring bone health, but they are only used to detect bone mineral density. X-ray machines are not ideal for use in space due to the health risk radiation poses to astronauts, who are exposed to higher levels of radiation outside of Earth’s protective atmosphere and magnetic field.

Qin is currently conducting clinical evaluations of the diagnostic part of the technology. The mobile device runs off of a laptop computer, and an image of the heel or wrist can be completed in about five minutes. Also under development is the capability to scan the knee and hip.

Meanwhile, the group is continuing development of the therapeutic portion of the technology. On Earth, it takes six weeks to heal a fracture in normal conditions. The healing process may take longer in space. He said the device will help accelerate fracture healing by stimulating bone regeneration.

Ultrasound has been used to heal fractures, but it has not been effective due to its lack of accuracy at the fracture site. This is where Qin’s guided approach will be beneficial. “We are trying to use ultrasound technology as a way to get an image of the fracture site,” Qin said. “An integrated probe will directly shoot ultrasound into the region of the fracture. We hope this will result in effective acceleration of fracture healing.”

SCAN technology will be an ideal tool for health care providers on Earth who are dealing with an increasing elderly population and for those in rural areas where access to medical facilities is limited. In addition to being small and easier to use than X-ray based bone density measurement machines, the ultrasound device could be as much as 10-times cheaper to purchase and operate. “If we can provide a cost-effective, easy to operate machine at the doctor’s office, then they can monitor patients at minimal cost,” Qin said. “Also, it is non-invasive and non-destructive. People are not hesitant to get additional tests.”

Qin’s project is one of nine currently in the NSBRI Smart Medical Systems and Technology Team’s portfolio devoted to developing new integrated medical systems to assist in delivering quality health care in space. Other areas being researched include space surgery and supporting techniques, routine risk and health-monitoring systems, and automated systems and devices to aid in decision-making, training and diagnosis. The new systems will have immediate benefits for health care on Earth.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | NSBRI
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>