Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Safer CT scanning for children developed at the Queen Silvia Children's Hospital

A research team at the Queen Silvia Children's Hospital has developed a method that allows the lowest possible dose of radiation for children having a CT scan while still obtaining good image quality, reveals a thesis from the Sahlgrenska Academy.

Computed tomography (CT) is an advanced form of X-ray examination which generates images that are extremely detailed and very useful in diagnosing patients. If the dose of radiation is lowered too far, however, the scans become blurred and there is a risk of missing small details.

The author of the thesis, medical physicist Kerstin Ledenius from the Department of Radiophysics at the Sahlgrenska Academy, has studied and tested a new method together with radiologists, nurses and medical physicists at the Queen Silvia Children's Hospital. This method manages to combine the lowest possible dose of radiation with what radiologists consider to be sufficiently high image quality for correct diagnosis. In various studies, the research group also looked at the image quality of CT scans of the brains and stomachs of children in various age groups from birth to 17 years.

Computer manipulation of images from previous scans was used to simulate various reductions in radiation dose. The research group then assessed the results of the simulation and decided whether exposure to radiation should be adjusted for the next patient in the same situation, and if so by how much. This made it possible to find the lowest exposure capable of producing a sufficiently good image for each type of examination performed.

“Adjusting exposure is important, as a small patient does not need the same exposure as a large one,” explains Ledenius. “Children also differ anatomically from adults, which affects the image quality needed."

The method is already in use at the Queen Silvia Children's Hospital, and Ledenius hopes that more hospitals will follow suit.

“Our method ensures the best possible CT scanning, combining images of high quality with the least possible exposure to radiation.”
Computed tomography (CT) is a medical imaging method where multiple 2D images are combined with the help of a computer to reveal the structure of tissues in a section of the body in 3D. This is achieved by passing X-rays through the body from different angles. CT scans are used primarily to diagnose diseases inside the skull and spine. In 2005, a total of 5.4 million X-ray examinations were performed in Sweden, with CT scans accounting for 12% of these and around 60% of the total dose of radiation. Three years later, in 2008, CT scans accounted for 72% of the total radiation dose, the number of scans having increased by 36%, but some doses having been lowered. The reason for the increase in exposure is that more CT scans are being performed, because they enable more reliable diagnoses than standard X-ray examinations.
Bibliographic data
Journal: Br J Radiol. 2010 Jul;83(991):604-11. Epub 2010 Mar 24.
Title: A method to analyse observer disagreement in visual grading studies: example of assessed image quality in paediatric cerebral multidetector CT images.

Authors: Ledenius K, Svensson E, Stålhammar F, Wiklund LM, Thilander-Klang A.

For more information, please contact:
Kerstin Ledenius, medical physicist and researcher at the Department of Radiophysics, Institute of Clinical Sciences, Sahlgrenska Academy, tel: +46 (0)31 342 4027, mobile: +46 (0)708 185815, e-mail: - Thesis

Helena Aaberg | idw
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The nanostructured cloak of invisibility

25.10.2016 | Life Sciences

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

More VideoLinks >>>