Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robotic-assisted radical bladder surgery potentially benefits bladder cancer patients

19.12.2012
Patients with muscle invasive bladder cancer may experience less loss of blood and shorter hospital stays as a result of robotic-assisted surgery, new randomized study in the Journal of Urology

About 30 percent of the more than 70,000 bladder cancer cases expected in 2012 are muscle invasive. In such cases, radical cystectomy is the preferred treatment. In a pilot trial, a team of investigators assessed the efficacy of open radical cystectomy (ORC) vs. robotic-assisted laparoscopic radical cystectomy (RARC). While there were no significant differences in treatment outcomes, RARC resulted in decreased estimated blood loss and shorter hospital stay compared to ORC. The results are published in the February 2013 issue of The Journal of Urology.

"In the last decade minimally invasive approaches including robotic-assisted approaches have emerged as viable surgical options for many urological malignancies with the promise of decreased morbidity with shorter hospital stays, faster recovery, and less narcotic analgesic requirements," says lead investigator Dipen J. Parekh, MD, Professor and Chairman of the University of Miami Miller School of Medicine's Department of Urology and Director of robotic surgery; formerly at the University of Texas Health Science Center at San Antonio.

The goal of the clinical trial was to provide preliminary data from a single institution's randomized trial that evaluated the benefits of robotic-assisted vs. open surgery in patients with invasive bladder cancer. The trial, conducted between July 2009 and June 2011, involved 47 patients and was performed at the University of Texas Health Science Center at San Antonio. Primary eligibility was based on candidacy for an open or robotic approach at the discretion of the treating surgeon. Forty patients were randomized individually and equally to either an ORC or RARC group using a computer randomization program. Each of the two study groups was similar in distribution of age, gender, race, body mass index, previous surgeries, operative time, postoperative complications, and final pathological stage.

Investigators evaluated five surgery outcome factors: Estimated blood loss, operative time from incision to closure, transfusion requirements, time to return of bowel function, and length of stay.

The robotic group experienced significantly decreased blood loss, accompanied by a trend toward faster return of bowel function, fewer hospitalizations beyond five days, and fewer transfusions.

"The strength of our study is the prospective randomized nature that eliminates selection biases that may have been present in prior retrospective analyses," says Dr. Parekh. "We also believe that our study demonstrates that a prospective randomized trial comparing traditional open and robotic approaches in bladder cancer is possible."

This investigative team has joined with several institutions nationally to build on its study and has started an advanced randomized clinical trial among multiple institutions to further compare and assess open vs. robotic-assisted radical cystectomy among patients with invasive bladder cancer. It plans to collect intermediate and long-term survival data from these same patients as well as data on quality of life, daily living activities, handgrip strength, and mobility.

Linda Gruner | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Medical Engineering:

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

nachricht Real-time MRI analysis powered by supercomputers
17.02.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>