Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rice University technology in human trials to spot cardiac disease, cancer, drug abuse

Diagnostic chip may help hearts, cut costs

Heart disease is a silent killer, but new microchip technology from Rice University is expected to advance the art of diagnosis.

During National Heart Health Month, Rice Professor John McDevitt will discuss the potential of this technology to detect cardiac disease early at the annual meeting of the American Association for the Advancement of Science (AAAS) in Washington, D.C., Feb. 17-21. Cardiac disease is the focus of one of six ongoing major clinical trials of Rice's programmable bio-nano-chips (PBNCs).

PBNCs combine microfluidics, nanotechnology, advanced optics and electronics to enable quick, painless diagnostic tests for a wide range of diseases at minimal cost.

Current clinical trials employ PBNCs to test more than 4,000 patients for signs of heart disease, ovarian cancer, prostate cancer, oral cancer and drug abuse. Versions to test for HIV/AIDS and other diseases are also in development.

"Too often, the first time people know they're suffering from heart disease is when it kills them," said McDevitt, Rice's Brown-Wiess Professor of Chemistry and Bioengineering, who will participate in a global health seminar at AAAS.

"With this test, we expect to save lives and dramatically cut the recovery time and cost of caring for those who suffer from heart ailments," said McDevitt, a pioneer in the creation of microfluidic devices for biomedical testing. He anticipates the PBNCs, when manufactured in bulk, will cost only a few dollars each.

PBNCs analyze a patient's saliva for biomarkers associated with cardiovascular disease. Unfortunately, McDevitt said, only about half of the patients having a heart attack are diagnosed immediately via electrocardiogram. The rest require a series of time-consuming laboratory tests that take up to 12 hours to complete. PBNCs now in development deliver results in as little as 20 minutes and provide clinicians with timely information that can help them manage patients more effectively.

"A critical thing to recognize in a heart attack is that if we're able to open the blocked vessel within an hour, we've salvaged a heart muscle," said Biykem Bozkurt, the Mary and Gordon Cain Chair and Professor of Medicine and director of the Winters Center for Heart Failure Research at Baylor College of Medicine (BCM). "Thus, the patient's chance of survival is significantly improved."

Bozkurt and Christie Ballantyne, chief of atherosclerosis and vascular medicine and professor of medicine at BCM and director of the Center for Cardiovascular Disease Prevention at the Methodist DeBakey Heart and Vascular Center, are leading the trial at Houston's Michael E. DeBakey VA Medical Center, one of four sites hosting the cardiac trial that will recruit 1,000 patients.

McDevitt noted that of 5 million visits to American emergency rooms each year for chest pain, approximately 80 percent are false alarms.

"We have patients clogging the ER system and delaying the recognition of true heart attack cases because we can't, in an expeditious manner, rule out false alarms that could have been diagnosed in the ambulance or the home setting," said Bozkurt, who also serves as cardiology section chief at the VA.

The potential cost savings for even a single patient are tremendous, said Vivian Ho, the James A. Baker III Institute Chair in Health Economics and a professor of economics at Rice.

"Treating patients in the emergency room is one of the highest costs we have in the health care system," Ho said, "particularly for heart attacks, because heart disease is the leading killer of Americans and it accounts for a large proportion of our health care costs.

"If we can identify these patients quickly so we can avoid aggressive diagnostic tests further on down the road -- for example, cardiac catheterizations and procedures that cost tens of thousands of dollars -- by instead using a relatively low-cost diagnostic chip, that's a tremendous opportunity to provide better care and lower costs," she said.

McDevitt expects PBNCs and their toaster-sized reader will ultimately find a place at many points of care -- hospitals, doctors' or dentists' offices, pharmacies and remote clinics worldwide -- where they will allow clinicians to quickly diagnose a variety of ailments.

He anticipates Rice's BioScience Research Collaborative, part of the Texas Medical Center, to be the hub of a pipeline in which chips will be programmed to spot biomarkers for many important diseases.

"PNBC technology marries medical devices and microelectronics," McDevitt said, "and it has the potential to revolutionize the flow of information in the practice of medicine while significantly reducing cost. I like to think of it as the iPhone of medicine, with the same potential to be a game changer. And it's just around the corner."

Related materials:

Video with a short discussion and demonstration of the technology is available at

Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for "best value" among private universities by Kiplinger's Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.

David Ruth | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse
12.03.2018 | Westfälische Wilhelms-Universität Münster

nachricht 3-D-written model to provide better understanding of cancer spread
05.03.2018 | Purdue University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>