Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Study Materials, Combustion, Cancer with New ‘T-ray’ Instrument

28.10.2009
A new, $500,000 instrument recently went about its work emitting and reading high-speed pulses of silent and invisible terahertz rays.

As it did, Thomas Chiou explained how the technology would allow Iowa State University researchers to take a close and unique look at materials reliability, biofuels combustion, environmental clean-up, cancer screening, biomass conversion, ionic liquids and many other research areas in science and engineering.

The Terahertz Ray (or “T-ray”) Research Facility at Iowa State’s Center for Nondestructive Evaluation (CNDE) gives researchers a state-of-the-art tool to measure and characterize materials, said Chiou, an associate scientist at the center who’s managing the new T-ray facility.

The instrument should produce useful data for the automotive, aviation, food, energy, materials, pharmaceuticals, medical, forensics, defense and homeland security fields.

“This machine represents a new frequency regime in which measurements can be made,” said R. Bruce Thompson, an Anson Marston Distinguished Professor in Engineering, the director of the Center for Nondestructive Evaluation and leader of the collaboration that brought the instrument to Iowa State. “When you have a new way to make measurements, there are new things you can do in applied and fundamental sciences.”

Iowa State acquired the instrument with the help of a $342,500 grant from the National Science Foundation’s Major Research Instrumentation program.

Researchers who worked to acquire the instrument include Thompson; Chiou; Viren Amin, an associate scientist at CNDE and adjunct assistant professor of electrical and computer engineering; Daniel Barnard, an assistant engineer for CNDE and an assistant scientist for the U.S. Department of Energy’s Ames Laboratory; Stephen Holland, a group leader at CNDE and an assistant professor of aerospace engineering; David Hsu, a senior scientist for CNDE and adjunct professor of aerospace engineering; John McClelland, a scientist for the Institute for Physical Research and Technology, the Ames Laboratory and an adjunct associate professor of mechanical engineering; Terry Meyer, an assistant professor of mechanical engineering; Say-Kee Ong, a professor of civil, construction and environmental engineering; and Jacob Petrich, professor and chair of chemistry.

Chiou said the new instrument is made possible by advances in ultra-fast laser technology. It emits terahertz rays that are focused on a material or object. The rays reflect back to the receiver and the instrument’s controlling computer records and displays the resulting data. That data can show 3-D spatial images of the object’s inner structures and also provide spectroscopic analyses of chemical and physical compositions.

The rays – they’re between microwave and infrared rays in a relatively unexplored segment of the electromagnetic spectrum – can penetrate many common gases, non-metal solids and some liquids, Chiou said. They’re not known to cause harm to people or materials. They also show unique signatures for many materials.

Chiou said the Iowa State T-ray facility will feature two separate systems. One is a time-domain pulsed system suitable for high-speed, time-resolved imaging tasks. The second is a frequency-domain, continuous-wave system for applications requiring finer resolution.

Chiou said the National Aeronautics and Space Administration was the first to demonstrate the technology’s potential in nondestructive evaluation when NASA engineers successfully used T-rays to look for defects in the foam that insulates and protects the Space Shuttle’s external fuel tanks.

“There are a lot of applications for this technology and we’re discovering more and more of them,” Chiou said.

And so researchers at Iowa State’s Terahertz Ray Research Facility are looking for university and industry collaborators who want to see what the new equipment can do for their projects.

“There is a lot of emphasis on innovation these days,” Thompson said. “We see this technology as a way to encourage innovative ideas. We’re excited just to try some new things.”

Contacts:
R. Bruce Thompson, Center for Nondestructive Evaluation, (515) 294-7864, thompsonrb@cnde.iastate.edu

C. Thomas Chiou, Center for Nondestructive Evaluation, (515) 294-0299, cchiou@cnde.iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Medical Engineering:

nachricht PET identifies which prostate cancer patients can benefit from salvage radiation treatment
05.12.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Designing a golden nanopill
01.12.2017 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>