Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop novel molecular blood group typing technique

10.04.2014

New technology can reduce adverse reactions and decrease blood bank costs, report investigators in The Journal of Molecular Diagnostics

Scientists in France have designed a new system for molecular blood group typing that offers blood banks the possibility of extensive screening of blood donors at a relatively low cost. Their approach is described in the current issue of The Journal of Molecular Diagnostics.

Although blood transfusion is generally safe, alloimmunization (when an antibody is formed in response to an antigen that is not present on a person's own red blood cells [RBCs]) remains a dreaded complication, particularly in patients with sickle cell diseases.

"This may cause problems, ranging from delayed hemolytic transfusion reaction to difficulty in obtaining matched RBCs. Where patients have alloantibodies, producing a sufficient quantity of extensively typed blood units will never be feasible using conventional serologic donor screening methods," explains lead investigator Jean-Charles Brès, PhD, of the Etablissement Français du Sang Pyrénées Méditerranée, Montpellier.

The standard technique, conventional hemagglutination, is a lengthy procedure and involves only a limited range of antigen testing. In this antibody-based agglutination, RBCs suspended in liquid collect into clumps when bound by the antigen-specific antibody. Dr. Brès adds, "In the French Blood Service, the Etablissement Français du Sang (EFS), blood donation qualification laboratories test all blood donations for A, B, O, Rhesus (RH1), and KEL (KEL1) blood groups, but only 5% to 10% of donations are tested for other clinically significant antigens."

The investigators therefore developed a new flexible DNA microarray platform for molecular blood group typing. This includes two robotic workstations that allow processing from blood sample to the genotype. A pilot study shows promising results for responding to blood donor laboratories' requirements for simple, low-cost screening.

For small batch production, the cost of genotyping, including genomic DNA extraction, labor, and equipment, was less than $2.60 per single-nucleotide polymorphism (SNP) for a multiplex set of eight SNPs – four times lower than the per-antigen cost using serologic methods.

"High-throughput DNA typing could facilitate support for patients undergoing long-term transfusion who are at high risk of alloantibody production, such as patients with sickle cell disease, thalassemia, or autoimmune hemolytic anemia. Another application would be donor identification to obtain rare blood units for specific patients and improve the ability to supply rare blood types," says Dr. Brès. "The availability of high throughput DNA-based blood group genotyping would be a great boon for transfusion medicine." He continues, "In addition to providing more fully antigen-matched RBCs and allowing better identification of rare donor blood types, this technology will reduce adverse reactions and decrease the relative cost of analysis."

TECHNICAL DETAILS OF THE STUDY

The purpose of this study was to set up and validate a flexible robotic platform using a 96-well DNA microarray for multiplex blood group genotyping.

A total of 1,132 EDTA-anticoagulated blood samples were collected by the EFS in Rhône Alpes, France. Random donors, mostly Caucasian, were extensively phenotyped using standard serologic hemagglutination techniques in the Blood Donation Qualification Laboratory (Metz-Tessy, France). One hundred seventy-two samples were used to determine scoring criteria for predicting phenotype. The remaining 960 samples were used for validation of the 96-well DNA microarray system.

Genomic DNA extraction from whole blood samples (200 mL) was performed using a MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) and Viral NA Small Volume Kit (Roche Diagnostics) in a 96-well microarray plate according to the manufacturers' instructions. After extraction, DNA was eluted in 50 µL of buffer solution and quantified using a NanoVue spectrophotometer (GE Healthcare, Little Chalfont, UK).

A total of 938 samples were considered as valid and assigned genotypes based on the scoring criteria determined for the eight SNPs. Phenotypes predicted from genotypes were compared with those obtained by serologic typing. The concordance rate between the DNA-based and standard hemagglutination assays was high for all four blood group systems. Only three predicted phenotypes that involved the KEL, JK, and MNS systems were discordant.

This version allows simultaneous multiplex assay of up to 96 samples in a single reaction run, but the system allows other DNA microarray formats with a lower number of wells to be easily adapted and processed on this platform.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>