Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop novel molecular blood group typing technique

10.04.2014

New technology can reduce adverse reactions and decrease blood bank costs, report investigators in The Journal of Molecular Diagnostics

Scientists in France have designed a new system for molecular blood group typing that offers blood banks the possibility of extensive screening of blood donors at a relatively low cost. Their approach is described in the current issue of The Journal of Molecular Diagnostics.

Although blood transfusion is generally safe, alloimmunization (when an antibody is formed in response to an antigen that is not present on a person's own red blood cells [RBCs]) remains a dreaded complication, particularly in patients with sickle cell diseases.

"This may cause problems, ranging from delayed hemolytic transfusion reaction to difficulty in obtaining matched RBCs. Where patients have alloantibodies, producing a sufficient quantity of extensively typed blood units will never be feasible using conventional serologic donor screening methods," explains lead investigator Jean-Charles Brès, PhD, of the Etablissement Français du Sang Pyrénées Méditerranée, Montpellier.

The standard technique, conventional hemagglutination, is a lengthy procedure and involves only a limited range of antigen testing. In this antibody-based agglutination, RBCs suspended in liquid collect into clumps when bound by the antigen-specific antibody. Dr. Brès adds, "In the French Blood Service, the Etablissement Français du Sang (EFS), blood donation qualification laboratories test all blood donations for A, B, O, Rhesus (RH1), and KEL (KEL1) blood groups, but only 5% to 10% of donations are tested for other clinically significant antigens."

The investigators therefore developed a new flexible DNA microarray platform for molecular blood group typing. This includes two robotic workstations that allow processing from blood sample to the genotype. A pilot study shows promising results for responding to blood donor laboratories' requirements for simple, low-cost screening.

For small batch production, the cost of genotyping, including genomic DNA extraction, labor, and equipment, was less than $2.60 per single-nucleotide polymorphism (SNP) for a multiplex set of eight SNPs – four times lower than the per-antigen cost using serologic methods.

"High-throughput DNA typing could facilitate support for patients undergoing long-term transfusion who are at high risk of alloantibody production, such as patients with sickle cell disease, thalassemia, or autoimmune hemolytic anemia. Another application would be donor identification to obtain rare blood units for specific patients and improve the ability to supply rare blood types," says Dr. Brès. "The availability of high throughput DNA-based blood group genotyping would be a great boon for transfusion medicine." He continues, "In addition to providing more fully antigen-matched RBCs and allowing better identification of rare donor blood types, this technology will reduce adverse reactions and decrease the relative cost of analysis."

TECHNICAL DETAILS OF THE STUDY

The purpose of this study was to set up and validate a flexible robotic platform using a 96-well DNA microarray for multiplex blood group genotyping.

A total of 1,132 EDTA-anticoagulated blood samples were collected by the EFS in Rhône Alpes, France. Random donors, mostly Caucasian, were extensively phenotyped using standard serologic hemagglutination techniques in the Blood Donation Qualification Laboratory (Metz-Tessy, France). One hundred seventy-two samples were used to determine scoring criteria for predicting phenotype. The remaining 960 samples were used for validation of the 96-well DNA microarray system.

Genomic DNA extraction from whole blood samples (200 mL) was performed using a MagNA Pure 96 system (Roche Diagnostics, Rotkreuz, Switzerland) and Viral NA Small Volume Kit (Roche Diagnostics) in a 96-well microarray plate according to the manufacturers' instructions. After extraction, DNA was eluted in 50 µL of buffer solution and quantified using a NanoVue spectrophotometer (GE Healthcare, Little Chalfont, UK).

A total of 938 samples were considered as valid and assigned genotypes based on the scoring criteria determined for the eight SNPs. Phenotypes predicted from genotypes were compared with those obtained by serologic typing. The concordance rate between the DNA-based and standard hemagglutination assays was high for all four blood group systems. Only three predicted phenotypes that involved the KEL, JK, and MNS systems were discordant.

This version allows simultaneous multiplex assay of up to 96 samples in a single reaction run, but the system allows other DNA microarray formats with a lower number of wells to be easily adapted and processed on this platform.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Medical Engineering:

nachricht Laser-assisted wound closure for oral and maxillofacial surgery
09.02.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Self-learning software for better medical diagnoses
02.02.2016 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>