Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows PET imaging effective in predicting lung cancer outcomes

08.10.2013
Study published in Journal of Clinical Oncology

Advanced imaging with Positron Emission Tomography (PET) scan shows great promise in predicting which patients with inoperable lung cancer have more aggressive tumors and need additional treatment following standard chemotherapy/radiation therapy, according to new research recently published online in the Journal of Clinical Oncology.

The multi-site trial, led by study author and principal investigator Mitch Machtay, MD, University Hospitals Case Medical Center Seidman Cancer Center, enrolled 250 patients at 60 cancer centers around the country. The National Cancer Institute-funded trial, led by the American College of Radiology Imaging Network (ACRIN) in collaboration with Radiation Therapy Oncology Group (RTOG), enrolled 250 patients at 60 cancer centers around the country.

"Lung cancer remains the number one cancer killer in the United States. These findings have the potential to give cancer physicians a new tool to more effectively tailor treatments for patients with locally advanced lung cancer," says Dr. Machtay, Chairman of Radiation Oncology at UH Case Medical Center and Case Western Reserve University School of Medicine. "This cooperative group study determined that the PET scan can show us which patients have the most aggressive tumors, potentially enabling us to intensify their treatment."

A PET scan is a unique type of imaging test that reveals physiologic processes in organs such as the lung. Unlike other types of medical imaging that display the body's structure, PET shows changes in metabolic and chemical activity caused by actively growing cancer cells. The scan visualizes areas of greater intensity, called "hot spots," and lights them up to help physicians pinpoint the disease.

In this study, stage III lung cancer patients had PET scans before and after a combined treatment regimen of chemotherapy and radiation therapy. They measured how rapidly tumors absorb a radioactive sugar molecule (known as FDG). Since most cancer cells take up sugar at a higher rate than normal cells, areas of tumor typically light up brightly on PET scans.

The researchers found that the post-treatment scan was predictive for patients' prognosis by identifying that patients with high levels of FDG uptake following treatment had more aggressive tumors that were more likely to recur. The researchers found that the higher the standard uptake value (SUV) for FDG in the primary tumor, the greater the recurrence rate and the lower the survival rate of patients.

The results also showed that there was a strong correlation between the radiation dose intensity and local control of the cancer, indicating that further research needs to be conducted in radiation technology for lung cancer

"This is one of the largest studies-of-its kind to show that PET scans have great potential in predicting the prognosis for patients with inoperable lung cancer," says Dr. Machtay. "It supports the theory that PET scans add an important new dimension to a physician's ability to determine which patients need additional cancer therapies to best manage their disease."

Among the nation's leading academic medical centers, UH Case Medical Center is the primary affiliate of Case Western Reserve University School of Medicine, a nationally recognized leader in medical research and education. National Cancer Institute-funded research is awarded to Case Western Reserve University School of Medicine. The study was supported by the NCI-funded ACRIN and RTOG.

Co-authors on the study are: Fenghai Duan, Barry A. Siegel, Bradley S. Snyder, Jeremy J. Gorelick, Janet S. Reddin, Reginald Munden, Douglas W. Johnson, Larry H. Wilf, Albert DeNittis, Nancy Sherwin, Kwan Ho Cho, Seok-ki Kim, Gregory Videtic, Donald R. Neumann, Ritsuko Komaki, Homer Macapinlac, Jeffrey D. Bradley and Abass Alavi.

The study can be found online at: http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2012.47.5947

About University Hospitals University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety. For more information, go to http://www.uhhospitals.org

Alicia Reale | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>