Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows PET imaging effective in predicting lung cancer outcomes

08.10.2013
Study published in Journal of Clinical Oncology

Advanced imaging with Positron Emission Tomography (PET) scan shows great promise in predicting which patients with inoperable lung cancer have more aggressive tumors and need additional treatment following standard chemotherapy/radiation therapy, according to new research recently published online in the Journal of Clinical Oncology.

The multi-site trial, led by study author and principal investigator Mitch Machtay, MD, University Hospitals Case Medical Center Seidman Cancer Center, enrolled 250 patients at 60 cancer centers around the country. The National Cancer Institute-funded trial, led by the American College of Radiology Imaging Network (ACRIN) in collaboration with Radiation Therapy Oncology Group (RTOG), enrolled 250 patients at 60 cancer centers around the country.

"Lung cancer remains the number one cancer killer in the United States. These findings have the potential to give cancer physicians a new tool to more effectively tailor treatments for patients with locally advanced lung cancer," says Dr. Machtay, Chairman of Radiation Oncology at UH Case Medical Center and Case Western Reserve University School of Medicine. "This cooperative group study determined that the PET scan can show us which patients have the most aggressive tumors, potentially enabling us to intensify their treatment."

A PET scan is a unique type of imaging test that reveals physiologic processes in organs such as the lung. Unlike other types of medical imaging that display the body's structure, PET shows changes in metabolic and chemical activity caused by actively growing cancer cells. The scan visualizes areas of greater intensity, called "hot spots," and lights them up to help physicians pinpoint the disease.

In this study, stage III lung cancer patients had PET scans before and after a combined treatment regimen of chemotherapy and radiation therapy. They measured how rapidly tumors absorb a radioactive sugar molecule (known as FDG). Since most cancer cells take up sugar at a higher rate than normal cells, areas of tumor typically light up brightly on PET scans.

The researchers found that the post-treatment scan was predictive for patients' prognosis by identifying that patients with high levels of FDG uptake following treatment had more aggressive tumors that were more likely to recur. The researchers found that the higher the standard uptake value (SUV) for FDG in the primary tumor, the greater the recurrence rate and the lower the survival rate of patients.

The results also showed that there was a strong correlation between the radiation dose intensity and local control of the cancer, indicating that further research needs to be conducted in radiation technology for lung cancer

"This is one of the largest studies-of-its kind to show that PET scans have great potential in predicting the prognosis for patients with inoperable lung cancer," says Dr. Machtay. "It supports the theory that PET scans add an important new dimension to a physician's ability to determine which patients need additional cancer therapies to best manage their disease."

Among the nation's leading academic medical centers, UH Case Medical Center is the primary affiliate of Case Western Reserve University School of Medicine, a nationally recognized leader in medical research and education. National Cancer Institute-funded research is awarded to Case Western Reserve University School of Medicine. The study was supported by the NCI-funded ACRIN and RTOG.

Co-authors on the study are: Fenghai Duan, Barry A. Siegel, Bradley S. Snyder, Jeremy J. Gorelick, Janet S. Reddin, Reginald Munden, Douglas W. Johnson, Larry H. Wilf, Albert DeNittis, Nancy Sherwin, Kwan Ho Cho, Seok-ki Kim, Gregory Videtic, Donald R. Neumann, Ritsuko Komaki, Homer Macapinlac, Jeffrey D. Bradley and Abass Alavi.

The study can be found online at: http://jco.ascopubs.org/cgi/doi/10.1200/JCO.2012.47.5947

About University Hospitals University Hospitals, the second largest employer in Northeast Ohio, serves the needs of patients through an integrated network of hospitals, outpatient centers and primary care physicians in 16 counties. At the core of our health system is University Hospitals Case Medical Center, one of only 18 hospitals in the country to have been named to U.S. News & World Report's most exclusive rankings list: the Best Hospitals 2013-14 Honor Roll. The primary affiliate of Case Western Reserve University School of Medicine, UH Case Medical Center is home to some of the most prestigious clinical and research centers of excellence in the nation and the world, including cancer, pediatrics, women's health, orthopedics and spine, radiology and radiation oncology, neurosurgery and neuroscience, cardiology and cardiovascular surgery, organ transplantation and human genetics. Its main campus includes the internationally celebrated UH Rainbow Babies & Children's Hospital, ranked among the top children's hospitals in the nation; UH MacDonald Women's Hospital, Ohio's only hospital for women; and UH Seidman Cancer Center, part of the NCI-designated Case Comprehensive Cancer Center at Case Western Reserve University. UH Case Medical Center is the 2012 recipient of the American Hospital Association – McKesson Quest for Quality Prize for its leadership and innovation in quality improvement and safety. For more information, go to http://www.uhhospitals.org

Alicia Reale | EurekAlert!
Further information:
http://www.uhhospitals.org

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>