Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gives unprecedented 3-D view of important brain receptor

30.06.2014

New details on the NMDA receptor could aid development of drugs for Alzheimer’s, Parkinson’s, depression, other neurological disorders

Researchers with Oregon Health & Science University's Vollum Institute have given science a new and unprecedented 3-D view of one of the most important receptors in the brain — a receptor that allows us to learn and remember, and whose dysfunction is involved in a wide range of neurological diseases and conditions, including Alzheimer's, Parkinson's, schizophrenia and depression.


Receptor with white background


Receptor with black background

The unprecedented view provided by the OHSU research, published online June 22 in the journal Nature, gives scientists new insight into how the receptor — called the NMDA receptor — is structured. And importantly, the new detailed view gives vital clues to developing drugs to combat the neurological diseases and conditions.

"This is the most exciting moment of my career," said Eric Gouaux, a senior scientist at the Vollum Institute and a Howard Hughes Medical Institute investigator. "The NMDA receptor is one of the most essential, and still sometimes mysterious, receptors in our brain. Now, with this work, we can see it in fascinating detail."

Receptors facilitate chemical and electrical signals between neurons in the brain, allowing those neurons to communicate with each other. The NMDA (N-methyl-D-aspartate) receptor is one of the most important brain receptors, as it facilitates neuron communication that is the foundation of memory, learning and thought.

Malfunction of the NMDA receptor occurs when it is increasingly or decreasingly active and is associated with a wide range of neurological disorders and diseases. Alzheimer's disease, Parkinson's disease, depression, schizophrenia and epilepsy are, in many instances, linked to problems with NMDA activity.

Scientists across the world study the NMDA receptor; some of the most notable discoveries about the receptor during the past three decades have been made by OHSU Vollum scientists.

The NMDA receptor makeup includes receptor “subunits" — all of which have distinct properties and act in distinct ways in the brain, sometimes causing neurological problems. Prior to Gouaux's study, scientists had only a limited view of how those subtypes were arranged in the NMDA receptor complex and how they interacted to carry out specific functions within the brain and central nervous system.

Gouaux's team of scientists – Chia-Hsueh Lee, Wei Lu, Jennifer Michel, April Goehring, Juan Du and Xianqiang Song – created a 3-D model of the NMDA receptor through a process called X-ray crystallography. This process throws x-ray beams at crystals of the receptor; a computer calibrates the makeup of the structure based on how those x-ray beams bounce off the crystals. The resulting 3-D model of the receptor, which looks something like a bouquet of flowers, shows where the receptor subunits are located, and gives unprecedented insight into their actions.

"This new detailed view will be invaluable as we try to develop drugs that might work on specific subunits and therefore help fight or cure some of these neurological diseases and conditions," Gouaux said. "Seeing the structure in more detail can unlock some of its secrets — and may help a lot of people."

The research was funded by a gift from Bernard and Jennifer Lacroute, along with a grant from the National Institutes of Health (#R37NS038631) and support from the Vollum Institute. Chia-Hsueh Lee is supported by an OHSU Brain Institute Fellowship, funded by Ronni Lacroute.

About THE OHSU VOLLUM INSTITUTE

The Vollum Institute is a privately endowed research institute at OHSU and is dedicated to basic research that will lead to new treatments for neurological and psychiatric diseases. Vollum scientists have transformed the field of neuroscience and, in particular, have been pioneers in the study of cellular signaling, neuronal development, gene regulation and the neurobiology of disease.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission. OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | Eurek Alert!
Further information:
http://www.ohsu.edu/xd/about/news_events/news/2014/06-23-research-gives-unprecede.cfm

Further reports about: 3-D Brain Eye N-methyl-D-aspartate NMDA diseases disorders receptor study

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>