Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research gives unprecedented 3-D view of important brain receptor

30.06.2014

New details on the NMDA receptor could aid development of drugs for Alzheimer’s, Parkinson’s, depression, other neurological disorders

Researchers with Oregon Health & Science University's Vollum Institute have given science a new and unprecedented 3-D view of one of the most important receptors in the brain — a receptor that allows us to learn and remember, and whose dysfunction is involved in a wide range of neurological diseases and conditions, including Alzheimer's, Parkinson's, schizophrenia and depression.


Receptor with white background


Receptor with black background

The unprecedented view provided by the OHSU research, published online June 22 in the journal Nature, gives scientists new insight into how the receptor — called the NMDA receptor — is structured. And importantly, the new detailed view gives vital clues to developing drugs to combat the neurological diseases and conditions.

"This is the most exciting moment of my career," said Eric Gouaux, a senior scientist at the Vollum Institute and a Howard Hughes Medical Institute investigator. "The NMDA receptor is one of the most essential, and still sometimes mysterious, receptors in our brain. Now, with this work, we can see it in fascinating detail."

Receptors facilitate chemical and electrical signals between neurons in the brain, allowing those neurons to communicate with each other. The NMDA (N-methyl-D-aspartate) receptor is one of the most important brain receptors, as it facilitates neuron communication that is the foundation of memory, learning and thought.

Malfunction of the NMDA receptor occurs when it is increasingly or decreasingly active and is associated with a wide range of neurological disorders and diseases. Alzheimer's disease, Parkinson's disease, depression, schizophrenia and epilepsy are, in many instances, linked to problems with NMDA activity.

Scientists across the world study the NMDA receptor; some of the most notable discoveries about the receptor during the past three decades have been made by OHSU Vollum scientists.

The NMDA receptor makeup includes receptor “subunits" — all of which have distinct properties and act in distinct ways in the brain, sometimes causing neurological problems. Prior to Gouaux's study, scientists had only a limited view of how those subtypes were arranged in the NMDA receptor complex and how they interacted to carry out specific functions within the brain and central nervous system.

Gouaux's team of scientists – Chia-Hsueh Lee, Wei Lu, Jennifer Michel, April Goehring, Juan Du and Xianqiang Song – created a 3-D model of the NMDA receptor through a process called X-ray crystallography. This process throws x-ray beams at crystals of the receptor; a computer calibrates the makeup of the structure based on how those x-ray beams bounce off the crystals. The resulting 3-D model of the receptor, which looks something like a bouquet of flowers, shows where the receptor subunits are located, and gives unprecedented insight into their actions.

"This new detailed view will be invaluable as we try to develop drugs that might work on specific subunits and therefore help fight or cure some of these neurological diseases and conditions," Gouaux said. "Seeing the structure in more detail can unlock some of its secrets — and may help a lot of people."

The research was funded by a gift from Bernard and Jennifer Lacroute, along with a grant from the National Institutes of Health (#R37NS038631) and support from the Vollum Institute. Chia-Hsueh Lee is supported by an OHSU Brain Institute Fellowship, funded by Ronni Lacroute.

About THE OHSU VOLLUM INSTITUTE

The Vollum Institute is a privately endowed research institute at OHSU and is dedicated to basic research that will lead to new treatments for neurological and psychiatric diseases. Vollum scientists have transformed the field of neuroscience and, in particular, have been pioneers in the study of cellular signaling, neuronal development, gene regulation and the neurobiology of disease.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission. OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | Eurek Alert!
Further information:
http://www.ohsu.edu/xd/about/news_events/news/2014/06-23-research-gives-unprecede.cfm

Further reports about: 3-D Brain Eye N-methyl-D-aspartate NMDA diseases disorders receptor study

More articles from Medical Engineering:

nachricht Vanderbilt Team First to Blend High-End Imaging Techniques
17.03.2015 | Vanderbilt University Medical Center

nachricht Developing radically new technologies for X-ray systems
04.02.2015 | Siemens AG

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>