Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World class technology and talent battle cancer at the Centenary Institute

Top Austrian professor puts cancer under the microscope

The Centenary Institute, one of Australia’s leading medical research institutes, unveiled a powerful microscope unlike any other in Australia today. Representing the cutting edge in medical technology and microscopy, the unique imaging features of the multiphoton microscope will enable scientists at the Centenary Institute unprecedented access to the secret workings of living tissues at the cellular and molecular level.

The Centenary Institute is equally excited about the arrival of Austrian Professor Wolfgang Weninger, one of only a handful of people in the world who specialises in using the multiphoton microscope in the immunology field to view immune responses in real-time in living tissue.

At the Centenary, Professor Weninger will lead a team of researchers to study the dynamics of the immune system’s response to cancer and infectious diseases.

Professor Weninger said, “Cancer is still a leading cause of death in Australia. There is a need to develop improved anti-cancer therapies based on the use of the body’s own resources - namely our immune system. This type of microscope is an outstanding tool to study how our bodies fight cancer both in early and advanced stages. If we can learn more about how our immune system attacks cancer cells directly in the context of intact tissues, we hope to develop improved immuno-therapies.”

Using the multiphoton microscope, Professor Weninger’s team pioneered ground-breaking imaging models to record how the body’s defences fight tumours and infectious diseases. He has already astounded the medical community in Australia and the world by showing real-time videos of white blood cells invading and destroying cancer cells in living tissue. Centenary’s Executive Director, Professor Mathew Vadas said, “The arrival of Professor Weninger and the multiphoton microscope marks a new era in medical research for the Centenary Institute.

With one of his recently published papers among the ten all-time highest-ranked papers in biomedicine, we are honoured to have such an eminent researcher as Professor Weninger join the Centenary Institute.

I am confident that the results of his team’s research will vastly improve our understanding of how the body’s immune system fights cancer and infectious diseases. The multiphoton microscope will also support the research of other Centenary scientists particularly in autoimmune and liver diseases.”

The multiphoton microscope at the Centenary Institute has two unique features, its imaging mode and laser. The unique imaging mode uses multiple laser beams and means fast moving objects and dynamic processes in living tissue can be viewed, for example, cells in the blood stream. The laser has been enhanced with a unit called an OPO that produces longer wavelengths of light than those used in other microscopes enabling researchers to potentially look deeper into living tissue than ever before.

Jane Moloney | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>