Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new device will make quality control of radiotherapy treatments possible

22.11.2007
The research team from the Department of Electronics and Computer Science at the University of Granada (UGR), together with the Department of Radiology at the Hospital Virgen de las Nieves in Granada, have designed a portable and low-cost device which can measure the ionizing radiation someone is exposed to, for example, during radiotherapy.

Ionizing radiations play a vital role in the treatment and diagnosis of malignant neoplastic illnesses as well as in the diagnosis of other pathologies. However, according to Manuel Vilches Pacheco from the Medical Physics and Radiology Department at the Hospital Virgen de las Nieves in Granada, “the potential harm ionizing radiations can cause means that, in order to obtain clinical benefits and reduce the onset of unwanted adverse effects as much as possible, they must be used under strict quality control”.

According to experts, this is why it is important to develop instruments which can verify the final result by carrying out a direct follow-up of treatments administered to patients, such as image registration (portal imaging system) or the in vivo measurement of the exact dose administered to patients.

In vivo Control
Portal imaging systems have greatly improved in the last five years and are widely used today. This is not the case for systems used for in vivo dose measurement in vivo which, in a significant number of patients and treatment sessions, “has been limited to a few centres”. This is because a great amount of effort is required to place the device onto the patient and as it interferes noticeably with the treatment “it can considerably modify the distribution of the administered dose”.

On this matter, Alberto Palma López, from the Department of Electronics and Computer Science at the University of Granada, explains that this new device does not require an electricity connection or a reading supply unit and, among other improvements, it minimizes treatment disorders and is made of low-cost and reusable electronic devices, “something that was impossible until now”.

Furthermore, the device’s design has metrological characteristics which ensures that it performs correctly at high temperatures. This means the room does not need to be specially fit out. The detector’s minuscule size can measure the radiation quickly in different areas of the body as well as keep a historical record of the patient.

Significant progress has been made in encouraging the widespread use in vivo dosimetry control, an important element among patients undergoing radiotherapy. However, its use can be extended to other radiological practices such as diagnosis by X-ray or for the protection of professionals exposed to a radioactive environment.

Today, the Oficina de Transferencia de Resultados de Investigación (OTRI), from the University of Granada, promotes this device wich is protected by patent.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/index.php

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>