Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial organs targeted in medical technology venture

05.11.2007
In setting up the «Artificial Organ Center for Biomedical Engineering Research», the University of Bern is bringing together its established areas of expertise in the field of medical technology. The outstanding international reputation of medical technology teaching and research in Bern is to be further enhanced in the long term by the creation of new assistant professorships.

Medical technology has become an established high-profile discipline in the University of Bern's Strategy 2012. The importance and excellent international reputation of Bernese medical technology is based on the traditionally high standards of Bern's teaching hospitals, its contribution to the National Centre of Competence in Research Co-Me, the «Technology for Humans» research focus programme at the Bern University of Applied Sciences (BFH) and the commercially successful medical technology companies in the «Espace» region of central Switzerland.

In order to consolidate its national and international position in the medical technology field in the long term, the University of Bern has now set up the «Artificial Organ Center for Biomedical Engineering Research (ARTORG Center)». Housed in the Medical Faculty of the University of Bern, the ARTORG Center is active in interdisciplinary teaching and research and development, focusing especially on artificial organs. Research groups from units within the Medical Faculty and other faculties at the University of Bern and other university institutions and universities of applied sciences will work together in the new center.

A close cooperation between clinicians, technologists, and the industry

According to the Dean of the Medical Faculty, Martin Täuber, this new platform will coordinate existing projects and clinical approaches that involve artificial organs and medical technology, yield improved technological support and cross-fertilization of projects, and thereby significantly raise the profile of the faculty and the University of Bern.

The scientific program of the ARTORG Center will be established and implemented by 11 newly created assistant professorships. The research groups will focus on the following artificial organs and specialist areas:

- Blood vessel
- Bladder
- Ear
- Eye
- Heart
- Kidney
- Liver
- Lung
- Pancreas
- Spine
- Implantation Technology of Artificial Organs
Medical technology research and development at the ARTORG Center will involve close cooperation between clinicians, technologists, the medical technology industry and other Swiss technology institutions. In particular, the center will work closely with the Technology and IT Faculty of Bern University of Applied Sciences. The ARTORG Center's involvement in the specialist «Master of Science in Biomedical Engineering» degree program and the PhD program of the «Graduate School for Cellular and Biomedical Sciences» will generate additional synergies between research and teaching.

The Director of the Institute for Surgical Technologies and Biomechanics at the Medical Faculty is responsible for the operational management of the center. A scientific committee appointed by the university management is responsible for the strategic leadership of the ARTORG Center and also for the quality of its science.

Nathalie Matter | alfa
Further information:
http://www.memcenter.unibe.ch/istb/index.html

More articles from Medical Engineering:

nachricht Novel PET tracer identifies most bacterial infections
06.10.2017 | Society of Nuclear Medicine and Molecular Imaging

nachricht Teleoperating robots with virtual reality
05.10.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>