Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial organs targeted in medical technology venture

05.11.2007
In setting up the «Artificial Organ Center for Biomedical Engineering Research», the University of Bern is bringing together its established areas of expertise in the field of medical technology. The outstanding international reputation of medical technology teaching and research in Bern is to be further enhanced in the long term by the creation of new assistant professorships.

Medical technology has become an established high-profile discipline in the University of Bern's Strategy 2012. The importance and excellent international reputation of Bernese medical technology is based on the traditionally high standards of Bern's teaching hospitals, its contribution to the National Centre of Competence in Research Co-Me, the «Technology for Humans» research focus programme at the Bern University of Applied Sciences (BFH) and the commercially successful medical technology companies in the «Espace» region of central Switzerland.

In order to consolidate its national and international position in the medical technology field in the long term, the University of Bern has now set up the «Artificial Organ Center for Biomedical Engineering Research (ARTORG Center)». Housed in the Medical Faculty of the University of Bern, the ARTORG Center is active in interdisciplinary teaching and research and development, focusing especially on artificial organs. Research groups from units within the Medical Faculty and other faculties at the University of Bern and other university institutions and universities of applied sciences will work together in the new center.

A close cooperation between clinicians, technologists, and the industry

According to the Dean of the Medical Faculty, Martin Täuber, this new platform will coordinate existing projects and clinical approaches that involve artificial organs and medical technology, yield improved technological support and cross-fertilization of projects, and thereby significantly raise the profile of the faculty and the University of Bern.

The scientific program of the ARTORG Center will be established and implemented by 11 newly created assistant professorships. The research groups will focus on the following artificial organs and specialist areas:

- Blood vessel
- Bladder
- Ear
- Eye
- Heart
- Kidney
- Liver
- Lung
- Pancreas
- Spine
- Implantation Technology of Artificial Organs
Medical technology research and development at the ARTORG Center will involve close cooperation between clinicians, technologists, the medical technology industry and other Swiss technology institutions. In particular, the center will work closely with the Technology and IT Faculty of Bern University of Applied Sciences. The ARTORG Center's involvement in the specialist «Master of Science in Biomedical Engineering» degree program and the PhD program of the «Graduate School for Cellular and Biomedical Sciences» will generate additional synergies between research and teaching.

The Director of the Institute for Surgical Technologies and Biomechanics at the Medical Faculty is responsible for the operational management of the center. A scientific committee appointed by the university management is responsible for the strategic leadership of the ARTORG Center and also for the quality of its science.

Nathalie Matter | alfa
Further information:
http://www.memcenter.unibe.ch/istb/index.html

More articles from Medical Engineering:

nachricht New technique makes brain scans better
22.06.2017 | Massachusetts Institute of Technology

nachricht New technology enables effective simultaneous testing for multiple blood-borne pathogens
13.06.2017 | Elsevier

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>