Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial organs targeted in medical technology venture

05.11.2007
In setting up the «Artificial Organ Center for Biomedical Engineering Research», the University of Bern is bringing together its established areas of expertise in the field of medical technology. The outstanding international reputation of medical technology teaching and research in Bern is to be further enhanced in the long term by the creation of new assistant professorships.

Medical technology has become an established high-profile discipline in the University of Bern's Strategy 2012. The importance and excellent international reputation of Bernese medical technology is based on the traditionally high standards of Bern's teaching hospitals, its contribution to the National Centre of Competence in Research Co-Me, the «Technology for Humans» research focus programme at the Bern University of Applied Sciences (BFH) and the commercially successful medical technology companies in the «Espace» region of central Switzerland.

In order to consolidate its national and international position in the medical technology field in the long term, the University of Bern has now set up the «Artificial Organ Center for Biomedical Engineering Research (ARTORG Center)». Housed in the Medical Faculty of the University of Bern, the ARTORG Center is active in interdisciplinary teaching and research and development, focusing especially on artificial organs. Research groups from units within the Medical Faculty and other faculties at the University of Bern and other university institutions and universities of applied sciences will work together in the new center.

A close cooperation between clinicians, technologists, and the industry

According to the Dean of the Medical Faculty, Martin Täuber, this new platform will coordinate existing projects and clinical approaches that involve artificial organs and medical technology, yield improved technological support and cross-fertilization of projects, and thereby significantly raise the profile of the faculty and the University of Bern.

The scientific program of the ARTORG Center will be established and implemented by 11 newly created assistant professorships. The research groups will focus on the following artificial organs and specialist areas:

- Blood vessel
- Bladder
- Ear
- Eye
- Heart
- Kidney
- Liver
- Lung
- Pancreas
- Spine
- Implantation Technology of Artificial Organs
Medical technology research and development at the ARTORG Center will involve close cooperation between clinicians, technologists, the medical technology industry and other Swiss technology institutions. In particular, the center will work closely with the Technology and IT Faculty of Bern University of Applied Sciences. The ARTORG Center's involvement in the specialist «Master of Science in Biomedical Engineering» degree program and the PhD program of the «Graduate School for Cellular and Biomedical Sciences» will generate additional synergies between research and teaching.

The Director of the Institute for Surgical Technologies and Biomechanics at the Medical Faculty is responsible for the operational management of the center. A scientific committee appointed by the university management is responsible for the strategic leadership of the ARTORG Center and also for the quality of its science.

Nathalie Matter | alfa
Further information:
http://www.memcenter.unibe.ch/istb/index.html

More articles from Medical Engineering:

nachricht XXL computed tomography: a new dimension in X-ray analysis
17.05.2018 | Fraunhofer-Gesellschaft

nachricht Why we need erasable MRI scans
26.04.2018 | California Institute of Technology

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>