Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye - ground: The truth in a distorting mirror

23.10.2007
Exclusive opportunities are provided to ophthalmologists by the device recently designed by specialists of the Institute of Problems of Laser Technologies (Russian Academy of Sciences) and their colleagues from the Faculty of Physics (Lomonosov Moscow State University).

It is the so-called digital fundus-camera equipped with the real-time aberrometer. In fact, two devices are combined in it – one of them enables to see the eye-ground and the other corrects distortions caused by the optical medium of the specific patient’s eye.

As a matter of fact, physicians have been using fundus-cameras for a long time, i.e. diagnostic devices for eye-ground investigation (fundus or more precisely fundus oculi – is the eye-ground). The first similar devices appeared back in the middle of the century before last, and constituted the optical system of lenses, mirrors and light bias, with the help of which it was possible to see blowup of the retina and the vessels feeding it. Since that time, fundus-cameras have been repeatedly improved and became digital – like digital cameras, however, the researchers failed to make the picture sufficiently distinct (at micron definition). It is the eye itself that impeded – its optical medium absorbs light, and its component “details” - cornea, lens and so on, including the eyeball per se – repeatedly change light waves’ direction, thus “blurring” the final image. Physicists call this phenomenon aberration – imperfection of the optical system.

Moreover, astronomers have long ago learned to successfully overcome this phenomenon, which distorts the light of faraway stars – with the help of, broadly speaking, distorting mirrors. It is necessary to know how the light waves’ direction changes on the way from their source through to the observer and how to correct the image – as though to “distort it back”. Physicists decided to apply this particular technique to the fundus-camera design: to measure the distortion and to correct it accordingly. An additional infrared laser and a special “ruby” mirror allowed to implement the idea.

So, an ordinary laser (or several lasers, if the image is needed in different spectral regions) illuminates the eye-ground, the light is reflected and when it is going through the optical system of the device it gets onto the camera matrix – this is how the “picture” is obtained, i.e. the image of the retina and the vessels feeding it, which the ophthalmologist needs to see for making a precise diagnosis. A moment prior to the laser starting operation, the aberration correction system is switched on. It means that the infrared laser (which is absolutely safe) will send its ray of light to find out how its intensity and direction will change on the way “down to the bottom and back”.

The sensors, having recorded these changes, send a signal to the “distorting mirror”, which in response distorts it exactly in such a way that compensates for the changes not for the infrared ray but for visible light – the one that allows to obtain the proper image. Only after the mirror gets “tuned up” accordingly, taking into account individual peculiarities of the eye under investigation, the ordinary laser is switched on and sends an impulse of light, which, having been reflected from the eye-ground and having been “corrected” with the help of the “ruby” mirror, gets onto the digital camera matrix.

As a result, one can get the eye-ground image several times more distinct as compared to the ones provided by ordinary, also digital fundus-cameras: the image at a micron definition. Habitually blurred picture of the retina and vessels on the computer display of the camera acquires unprecedented sharpness, which allows the ophthalmologist to quickly (at the rate of one shot per second) get an excellent image of the object in question, without spoiling his/her eyes in attempt to sort out “shadows and mists” of the pictures obtained with the help of any other fundus-cameras. Ophthalmologists and patients highly appreciate the Russian physicists’ invention.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>