Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoacoustic images add valuable information to conventional mammography

17.09.2007
Photoacoustic techniques can supplement conventional imaging techniques in breast cancer diagnostics.

From first tests on patients using the ‘photoacoustic mammoscope’ developed by the University of Twente, researcher dr. Srirang Manohar concludes that the images obtained add valuable information about the vascularisation of a tumor. The research has been done in cooperation with the Medisch Spectrum Twente hospital in Enschede, and the results are published in the online journal Optics Express.

In four out of five cases the photoacoustic images of the ‘suspect’ breast area show areas of high intensity around the tumor. The scientists attribute this to the vascularisation of the tumor: a tumor is fed by a large number of tiny blood vessels. These small vessels are not well visible on an X-ray mammogram, but they can indicate the malignancy of the tumor. In this way, photoacoustics has a potential in adding information to conventional X-ray and ultrasound mammography. In one of the cases now published in Optics Express, the X-ray apparently shows a benignant tumor, while the photoacoustic scan shows a ring-shaped area of high intensity: this may imply malignancy.

Listening to light
The Twente photoacoustic mammoscope (PAM) developed by scientists of the University of Twente, uses pulsed light from a laser, with which part of the breast is scanned. Absorption of the light by a blood vessel, for example, results in local heating, yielding a pressure wave. This pressure wave can be detected as ultrasound. By calculating the origin of the pressure wave, the location of the vessel can be visualized. Direct measurement of the light shining through tissue would be an alternative, but light is scattered highly and therefore it is complicated to reconstruct an adequate image. Using only ultrasound instead, would not result in detailed visualization of the blood vessels, as blood does hardly reflect ultrasound. The combination of light and ultrasound takes away the respective disadvantages: ultrasound will not be scattered and the effect of light on the bloodvessels can be measured using the photoacoustic signal.
Faster
The PAM-scan is, unlike in conventional X-ray mammography, taken with the patient in a lying position. The breast is just mildly compressed. The current examination takes about half an hour, but with faster ultrasound detectors this can be improved.

The research published by dr. Srirang Manohar shows the usefulness of the new technique in imaging the vascularisation of the tumor. Further research is required to determine to what extent this new information tells more about the nature of the tumor. Larger scale clinical studies are required for that.

The research of dr. Srirang Manohar has been done within the BMTI Institute for Biomedical Technology of the University of Twente, together with the Surgery and Radiology departments of the Medical Spectrum Twente hospital in Enschede. Manohar is supported by the Dutch Technology Foundation STW and the Netherlands Organisation for Scientific Research NWO.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/nieuws/pers/en/cont_07-047_en.doc/

More articles from Medical Engineering:

nachricht Virtual Reality in Medicine: New Opportunities for Diagnostics and Surgical Planning
07.12.2016 | Universität Basel

nachricht 3-D printed kidney phantoms aid nuclear medicine dosing calibration
06.12.2016 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>