Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoacoustic images add valuable information to conventional mammography

17.09.2007
Photoacoustic techniques can supplement conventional imaging techniques in breast cancer diagnostics.

From first tests on patients using the ‘photoacoustic mammoscope’ developed by the University of Twente, researcher dr. Srirang Manohar concludes that the images obtained add valuable information about the vascularisation of a tumor. The research has been done in cooperation with the Medisch Spectrum Twente hospital in Enschede, and the results are published in the online journal Optics Express.

In four out of five cases the photoacoustic images of the ‘suspect’ breast area show areas of high intensity around the tumor. The scientists attribute this to the vascularisation of the tumor: a tumor is fed by a large number of tiny blood vessels. These small vessels are not well visible on an X-ray mammogram, but they can indicate the malignancy of the tumor. In this way, photoacoustics has a potential in adding information to conventional X-ray and ultrasound mammography. In one of the cases now published in Optics Express, the X-ray apparently shows a benignant tumor, while the photoacoustic scan shows a ring-shaped area of high intensity: this may imply malignancy.

Listening to light
The Twente photoacoustic mammoscope (PAM) developed by scientists of the University of Twente, uses pulsed light from a laser, with which part of the breast is scanned. Absorption of the light by a blood vessel, for example, results in local heating, yielding a pressure wave. This pressure wave can be detected as ultrasound. By calculating the origin of the pressure wave, the location of the vessel can be visualized. Direct measurement of the light shining through tissue would be an alternative, but light is scattered highly and therefore it is complicated to reconstruct an adequate image. Using only ultrasound instead, would not result in detailed visualization of the blood vessels, as blood does hardly reflect ultrasound. The combination of light and ultrasound takes away the respective disadvantages: ultrasound will not be scattered and the effect of light on the bloodvessels can be measured using the photoacoustic signal.
Faster
The PAM-scan is, unlike in conventional X-ray mammography, taken with the patient in a lying position. The breast is just mildly compressed. The current examination takes about half an hour, but with faster ultrasound detectors this can be improved.

The research published by dr. Srirang Manohar shows the usefulness of the new technique in imaging the vascularisation of the tumor. Further research is required to determine to what extent this new information tells more about the nature of the tumor. Larger scale clinical studies are required for that.

The research of dr. Srirang Manohar has been done within the BMTI Institute for Biomedical Technology of the University of Twente, together with the Surgery and Radiology departments of the Medical Spectrum Twente hospital in Enschede. Manohar is supported by the Dutch Technology Foundation STW and the Netherlands Organisation for Scientific Research NWO.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/nieuws/pers/en/cont_07-047_en.doc/

More articles from Medical Engineering:

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

nachricht New bioimaging technique is fast and economical
21.08.2017 | Rensselaer Polytechnic Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>