Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoacoustic images add valuable information to conventional mammography

17.09.2007
Photoacoustic techniques can supplement conventional imaging techniques in breast cancer diagnostics.

From first tests on patients using the ‘photoacoustic mammoscope’ developed by the University of Twente, researcher dr. Srirang Manohar concludes that the images obtained add valuable information about the vascularisation of a tumor. The research has been done in cooperation with the Medisch Spectrum Twente hospital in Enschede, and the results are published in the online journal Optics Express.

In four out of five cases the photoacoustic images of the ‘suspect’ breast area show areas of high intensity around the tumor. The scientists attribute this to the vascularisation of the tumor: a tumor is fed by a large number of tiny blood vessels. These small vessels are not well visible on an X-ray mammogram, but they can indicate the malignancy of the tumor. In this way, photoacoustics has a potential in adding information to conventional X-ray and ultrasound mammography. In one of the cases now published in Optics Express, the X-ray apparently shows a benignant tumor, while the photoacoustic scan shows a ring-shaped area of high intensity: this may imply malignancy.

Listening to light
The Twente photoacoustic mammoscope (PAM) developed by scientists of the University of Twente, uses pulsed light from a laser, with which part of the breast is scanned. Absorption of the light by a blood vessel, for example, results in local heating, yielding a pressure wave. This pressure wave can be detected as ultrasound. By calculating the origin of the pressure wave, the location of the vessel can be visualized. Direct measurement of the light shining through tissue would be an alternative, but light is scattered highly and therefore it is complicated to reconstruct an adequate image. Using only ultrasound instead, would not result in detailed visualization of the blood vessels, as blood does hardly reflect ultrasound. The combination of light and ultrasound takes away the respective disadvantages: ultrasound will not be scattered and the effect of light on the bloodvessels can be measured using the photoacoustic signal.
Faster
The PAM-scan is, unlike in conventional X-ray mammography, taken with the patient in a lying position. The breast is just mildly compressed. The current examination takes about half an hour, but with faster ultrasound detectors this can be improved.

The research published by dr. Srirang Manohar shows the usefulness of the new technique in imaging the vascularisation of the tumor. Further research is required to determine to what extent this new information tells more about the nature of the tumor. Larger scale clinical studies are required for that.

The research of dr. Srirang Manohar has been done within the BMTI Institute for Biomedical Technology of the University of Twente, together with the Surgery and Radiology departments of the Medical Spectrum Twente hospital in Enschede. Manohar is supported by the Dutch Technology Foundation STW and the Netherlands Organisation for Scientific Research NWO.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/nieuws/pers/en/cont_07-047_en.doc/

More articles from Medical Engineering:

nachricht Wireless power can drive tiny electronic devices in the GI tract
28.04.2017 | Brigham and Women's Hospital

nachricht Artificial intelligence may help diagnose tuberculosis in remote areas
25.04.2017 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>