Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 3D light microscopy method reveals new perspectives on the dynamics of the cell’s skeleton

10.09.2007
Scientists from the European Molecular Biology Laboratory (EMBL) have developed a new method to prepare and image biological samples in three dimensions with laser light-sheet based fluorescence microscopy.

The technological advance, which is published in the current online issue of Nature Methods, allows for the first time the observation of the intrinsic dynamic properties of microtubules. These constitute a major part of the cell’s skeleton and can now be observed in a mechanically unconstrained and at the same time physiologically relevant context.

Microtubules form a network of protein filaments, which constantly grow and shrink. This network’s behaviour is controlled by the intrinsic properties of many different proteins. Conventional microscopy studies microtubules and other filaments in artificial set-ups, which biases certain behaviour and introduces artefacts via the hard and flat surfaces of the surrounding glass chamber.

Ernst Stelzer and his colleagues Philipp Keller and Francesco Pampaloni at EMBL have managed to overcome the limitations of traditional microscopy and discovered different microtubule behaviour in an unrestricted environment, resulting in a highly accurate characterisation of intrinsic microtubule dynamics in a close to life context.

The new method is currently being adopted to study other dynamic cellular processes. The authors expect their results to have a major impact on the understanding of the mechanical properties of tissue cells. This will also influence current nanobiotechnology and have a significant effect on cancer research.

Published online in Nature Methods on 10 September 2007.

http://www.embl.org/aboutus/news/press/2007/10sept07/

Lena Raditsch
Head of Communications
Office of Information and Public Affairs
EMBL
Meyerhofstr. 1
69117 Heidelberg
Germany

T: +49 6221 387 8125
F: +49 6221 387 8525
M:+49 151 14532784

lena.raditsch@embl.de

Lena Raditsch | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2007/10sept07/

More articles from Medical Engineering:

nachricht UTSA study describes new minimally invasive device to treat cancer and other illnesses
02.12.2016 | University of Texas at San Antonio

nachricht Earlier Alzheimer's diagnosis may be possible with new imaging compound
02.11.2016 | Washington University School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>