Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique reveals fatty hearts in pre-diabetics

05.09.2007
A simple imaging technique developed by UT Southwestern Medical Center researchers has revealed fat buildup in the hearts of pre-diabetic people long before symptoms of heart disease or diabetes appear.

The technique detects fat accumulation in cells of the beating heart in a way no other clinical method can, the researchers said, and may provide a way to screen patients for early signs of heart disease in diabetes.

“Hearts beat; people breathe; and magnetic resonance imaging is very sensitive to motion, so we had to find a way to electronically ‘freeze’ the image of the heart,” said Dr. Lidia Szczepaniak, assistant professor of internal medicine at UT Southwestern and senior author of a study appearing in the Sept. 4 issue of Circulation.

“We wanted a noninvasive method to study the beating human heart,” Dr. Szczepaniak said.

Dr. Szczepaniak and her colleagues developed a technique that captures the signal from a beating heart as a person lies in an ordinary magnet used for MRI scanning.

The researchers knew that fat builds up in the hearts of people with heart failure or non-insulin-dependent diabetes (type 2) from earlier studies involving patients undergoing heart transplants, but they didn’t know if this fatty buildup occurred before or after the diabetic conditions developed.

“There is currently no way to clinically evaluate the fatty heart,” Dr. Szczepaniak said. “Using this technique, which analyzes magnetic signals, we might be able to determine if people are prone to heart disease very early before the disease progresses. This method might also allow us to measure the effectiveness of medical treatments targeted toward lowering fat in the heart.”

In the new study, the UT Southwestern researchers used an ordinary MRI system, but added the newly developed computer software to convert the signals from a moving heart into a single image.

They looked at lean and obese people with normal blood sugar, obese people beginning to show abnormal sugar metabolism, and obese people with full-blown type 2 diabetes.

Their most important finding, Dr. Szczepaniak said, was that fat buildup in the heart develops before the onset of diabetes. They also found that the amount of fat in the heart of people with abnormal sugar metabolism was significantly higher than in those with normal blood sugar, whether obese or lean.

The amount of fat in the heart was unrelated to the amount of fat in the bloodstream or liver, indicating that measuring any of those factors could not predict accumulation of fat in the heart. Fat in the heart did correspond to the amount of fat in the stomach region, however.

The researchers recruited some participants from the Dallas Heart Study — a multi-ethnic, population-based study of more than 6,000 patients in Dallas County designed to examine cardiovascular disease.

Detecting fat in heart cells is especially important because once a heart cell dies, it is not replaced by a new one, as happens in many other tissues, said Dr. Roger Unger, professor of internal medicine at UT Southwestern and a co-author of the paper. “When you lose a heart cell, that’s it — you can’t get it back.”

Some researchers, including those at UT Southwestern, believe that as a person becomes over-weight, fat accumulates in normal fat cells, but eventually fat cells can’t store fat any more. Eventually the excess of fat kills other cells — a hypothesis supported by a recent study by Dr. Unger in mice.

“Dr. Szczepaniak is translating our rodent studies into humans, and that is a huge technological breakthrough,” Dr. Unger said.

But Dr. Unger also cautioned that no sophisticated test can replace common sense in fighting obesity: “You don’t need a fancy test to tell a patient not to eat too much.”

Other UT Southwestern researchers involved in the study were Dr. Jonathan McGavock, former postdoctoral fellow in internal medicine; Dr. Ildiko Lingvay, assistant professor of internal medicine; Dr. Ivana Zib, former medical fellow; Tommy Tillery, magnetic resonance imaging technician; Naomi Salas, former research assistant; Dr. Benjamin Levine, professor of internal medicine; Dr. Philip Raskin, professor of internal medicine; and Dr. Ronald Victor, professor of internal medicine.

The work was supported by the Heart and Stroke Foundation of Canada, the Canadian Institutes for Health Research, the Canadian Diabetes Association, the National Institutes of Health, the American Diabetes Association, the Donald W. Reynolds Foundation and Takeda Pharmaceuticals North America Inc.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Medical Engineering:

nachricht First transcatheter implant for diastolic heart failure successful
16.11.2017 | The Ohio State University Wexner Medical Center

nachricht Theranostic nanoparticles for tracking and monitoring disease state
13.11.2017 | SLAS (Society for Laboratory Automation and Screening)

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>