Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique reveals fatty hearts in pre-diabetics

05.09.2007
A simple imaging technique developed by UT Southwestern Medical Center researchers has revealed fat buildup in the hearts of pre-diabetic people long before symptoms of heart disease or diabetes appear.

The technique detects fat accumulation in cells of the beating heart in a way no other clinical method can, the researchers said, and may provide a way to screen patients for early signs of heart disease in diabetes.

“Hearts beat; people breathe; and magnetic resonance imaging is very sensitive to motion, so we had to find a way to electronically ‘freeze’ the image of the heart,” said Dr. Lidia Szczepaniak, assistant professor of internal medicine at UT Southwestern and senior author of a study appearing in the Sept. 4 issue of Circulation.

“We wanted a noninvasive method to study the beating human heart,” Dr. Szczepaniak said.

Dr. Szczepaniak and her colleagues developed a technique that captures the signal from a beating heart as a person lies in an ordinary magnet used for MRI scanning.

The researchers knew that fat builds up in the hearts of people with heart failure or non-insulin-dependent diabetes (type 2) from earlier studies involving patients undergoing heart transplants, but they didn’t know if this fatty buildup occurred before or after the diabetic conditions developed.

“There is currently no way to clinically evaluate the fatty heart,” Dr. Szczepaniak said. “Using this technique, which analyzes magnetic signals, we might be able to determine if people are prone to heart disease very early before the disease progresses. This method might also allow us to measure the effectiveness of medical treatments targeted toward lowering fat in the heart.”

In the new study, the UT Southwestern researchers used an ordinary MRI system, but added the newly developed computer software to convert the signals from a moving heart into a single image.

They looked at lean and obese people with normal blood sugar, obese people beginning to show abnormal sugar metabolism, and obese people with full-blown type 2 diabetes.

Their most important finding, Dr. Szczepaniak said, was that fat buildup in the heart develops before the onset of diabetes. They also found that the amount of fat in the heart of people with abnormal sugar metabolism was significantly higher than in those with normal blood sugar, whether obese or lean.

The amount of fat in the heart was unrelated to the amount of fat in the bloodstream or liver, indicating that measuring any of those factors could not predict accumulation of fat in the heart. Fat in the heart did correspond to the amount of fat in the stomach region, however.

The researchers recruited some participants from the Dallas Heart Study — a multi-ethnic, population-based study of more than 6,000 patients in Dallas County designed to examine cardiovascular disease.

Detecting fat in heart cells is especially important because once a heart cell dies, it is not replaced by a new one, as happens in many other tissues, said Dr. Roger Unger, professor of internal medicine at UT Southwestern and a co-author of the paper. “When you lose a heart cell, that’s it — you can’t get it back.”

Some researchers, including those at UT Southwestern, believe that as a person becomes over-weight, fat accumulates in normal fat cells, but eventually fat cells can’t store fat any more. Eventually the excess of fat kills other cells — a hypothesis supported by a recent study by Dr. Unger in mice.

“Dr. Szczepaniak is translating our rodent studies into humans, and that is a huge technological breakthrough,” Dr. Unger said.

But Dr. Unger also cautioned that no sophisticated test can replace common sense in fighting obesity: “You don’t need a fancy test to tell a patient not to eat too much.”

Other UT Southwestern researchers involved in the study were Dr. Jonathan McGavock, former postdoctoral fellow in internal medicine; Dr. Ildiko Lingvay, assistant professor of internal medicine; Dr. Ivana Zib, former medical fellow; Tommy Tillery, magnetic resonance imaging technician; Naomi Salas, former research assistant; Dr. Benjamin Levine, professor of internal medicine; Dr. Philip Raskin, professor of internal medicine; and Dr. Ronald Victor, professor of internal medicine.

The work was supported by the Heart and Stroke Foundation of Canada, the Canadian Institutes for Health Research, the Canadian Diabetes Association, the National Institutes of Health, the American Diabetes Association, the Donald W. Reynolds Foundation and Takeda Pharmaceuticals North America Inc.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Medical Engineering:

nachricht Novel breast tomosynthesis technique reduces screening recall rate
21.02.2017 | Radiological Society of North America

nachricht Biocompatible 3-D tracking system has potential to improve robot-assisted surgery
17.02.2017 | Children's National Health System

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>