Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New MRI finding sheds light on multiple sclerosis disease progressio

29.08.2007
Using magnetic resonance (MR) images of the brain, researchers have identified a new abnormality related to disease progression and disability in patients with multiple sclerosis (MS), according to a study published in the August issue of Radiology.

“Based on these findings, physicians may be able to diagnose multiple sclerosis more accurately and identify patients at risk for developing progressive disease,” said the study’s lead author, Rohit Bakshi, M.D., associate professor of neurology and radiology at Harvard Medical School and director of clinical MS-MRI at Brigham and Women’s Hospital and Partners MS Center in Boston.

MS is a chronic, autoimmune disease characterized by the destruction of myelin, the protective layers that surround nerve cells. It can affect numerous body functions, and symptoms may include visual and speech impairment, memory loss, depression, muscle weakness, loss of coordination, numbness, pain, bowel and bladder problems and sexual dysfunction.

MS affects approximately 400,000 people in the United States and as many as 2.5 million worldwide, mostly women between the ages of 20 and 50, according to the National Multiple Sclerosis Society.

There are four classifications of MS, but the two most common types are relapsing-remitting and secondary-progressive. Patients with relapsing-remitting MS will experience symptom flare-ups followed by periods of no disease progression. Patients with secondary- progressive MS exhibit an initial period of relapsing-remitting MS, followed by steady disease progression.

Dr. Bakshi and colleagues retrospectively reviewed the T1 MRI data of 145 MS patients, including 112 women and 33 men. Ninety-two patients had relapsing-remitting MS, and 49 patients had secondary-progressive MS. The disease classification was unknown in four patients.

The researchers found that T1-weighted MR images of the brains of MS patients often depict bright areas called hyperintense lesions, also known as areas of “T1 shortening,” and set out to determine if there was a relationship between the frequency and location of these lesions and disease progression, brain atrophy and disability in patients with MS.

The analysis uncovered 340 T1 hyperintense lesions in 123 patients. Lesions were more likely to be present in patients with secondary-progressive MS. In addition, 71 percent of patients with secondary-progressive MS had multiple T1 hyperintense lesions, compared with 46 percent of relapsing-remitting MS patients.

The total number of T1 hyperintense lesions was closely correlated with physical disability, disease progression and brain atrophy.

“The findings suggest that T1 hyperintense lesions commonly occur in patients with MS and that the presence of multiple lesions indicates a risk for an advancing disease course,” Dr. Bakshi said. “These results further emphasize the importance of MR neuroimaging in the diagnosis and management of neurologic disorders such as MS.”

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Medical Engineering:

nachricht Visualizing gene expression with MRI
23.12.2016 | California Institute of Technology

nachricht Illuminating cancer: Researchers invent a pH threshold sensor to improve cancer surgery
21.12.2016 | UT Southwestern Medical Center

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>