Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ‘chemically-sensitive MRI scan’ may bypass some invasive diagnostic tests in next decade

20.08.2007
A new chemical compound which could remove the need for patients to undergo certain invasive diagnostic tests in the future has been created by scientists at Durham University.

Research published in the academic journal, Chemical Communications, reveals that this new compound could be used in a ‘chemically-sensitive MRI scan’ to help identify the extent of progression of diseases such as cancer, without the need for intrusive biopsies.

The researchers, who are part of an Engineering and Physical Sciences Research Council (EPSRC) funded group developing new ways of imaging cancer, have created a chemical which contains fluorine. It could, in theory, be given to the patient by injection before an MRI scan. The fluorine responds differently according to the varying acidity in the body, so that tumours could be highlighted and appear in contrast or ‘light up’ on the resulting scan.

Professor David Parker of Durham University’s Department of Chemistry explained: “There is very little fluorine present naturally in the body so the signal from our compound stands out. When it is introduced in this form it acts differently depending on the acidity levels in a certain area, offering the potential to locate and highlight cancerous tissue.”

Professor Parker’s team is the first to design a version of a compound containing fluorine which enables measurements to be taken quickly enough and to be read at the right ‘frequency’ to have the potential to be used with existing MRI scanners, whilst being used at sufficiently low doses to be harmless to the patient.

Professor Parker continued: “We have taken an important first step towards the development of a selective new imaging method. However, we appreciate that there is a lot of work to do to take this laboratory work and put it into practice. In principle, this approach could be of considerable benefit in the diagnosis of diseases such as breast, liver or prostate cancer.”

Durham University has filed a patent on this new approach and is looking for commercial partners to help develop the research. Professor Parker and his team believe that molecules containing fluorine could be used in mainstream MRI diagnoses within the next decade.

Chris Hiley, Head of Policy and Research Management at The Prostate Cancer Charity, said: “This is interesting work. The researchers are still some way from testing how this new idea might work in people but they are dealing with a knotty and important problem. In prostate cancer in particular more research is needed into cancer imaging as current techniques need improving.

“This development could have applications in many other cancers too. Once transferred from the lab to the bedside this research has potential to help show exactly where cancer may be in the body. This would add certainty to treatment decisions and improve monitoring of cancer progress. Looking even further into the future it could even have some use in improving diagnosis.”

Media and Public Affairs Team | alfa
Further information:
http://www.durham.ac.uk
http://www.rsc.org/Publishing/Journals/CC/article.asp?doi=b705844f

More articles from Medical Engineering:

nachricht New technique to treating mitral valve diseases: First patient data
22.08.2017 | Universitätsspital Bern

nachricht New bioimaging technique is fast and economical
21.08.2017 | Rensselaer Polytechnic Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>