Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers develop way of detecting problems with artificial hip joints

03.08.2007
A more efficient way of detecting loosened artificial hip implants, which affect thousands of people every year, has been developed.

Engineers at the University of Bath have developed a diagnostic test which measures the frequency of sound produced when the femur bone in the leg is vibrated.

The new method is much more sensitive than the traditional method of using x-rays to detect the loosening of implants, and so can diagnose much smaller gaps around the implanted joint.

Around 50,000 people receive total hip replacements in the UK each year, and many will go on to develop pain from them. It is estimated that within 10 years of having an implant, about a quarter of patients will suffer pain from a loosening of the joint, which are joined to their leg bone by a special cement.

Surgeons find it difficult to know whether this from an infection, which can be cured by antibiotics, or because the joint has loosened, which means surgery is needed. A reliable diagnostic test is vital to save patients undergoing unnecessary surgery.

Dr James Cunningham, of the University of Bath’s Department of Mechanical Engineering, has developed the method of placing a piece of vibrating equipment on to the patient’s knee, which vibrates the femur and the hip joint.

An ultrasound device is attached to the hip and this picks up sound vibrations from the vibrating joint. If the sound’s frequencies are ‘pure’ – a regular wave of increasing and decreasing frequencies - then they know the joint is firmly fastened to the bone. If the sound waves are impure and irregular then they know that the joint has come loose.

“This finding is important because surgeons need to know if the pain the patient is feeling comes from a loose joint needing surgery, or from another cause,” said Dr Cunningham.

“The ultrasound method is better than any other method available now, including the traditional x-ray procedure, which can only pick up a large amount of loosening.”

Dr Cunningham’s work will appear shortly in the journal Medical Engineering and Physics.

Dr Cunningham hopes that the NHS and other medical organisations will use his findings to develop the device for use in hospitals.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk/news/2007/8/2/hip-joint.html

More articles from Medical Engineering:

nachricht 'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases
12.04.2017 | University of California - San Diego

nachricht PET radiotracer design for monitoring targeted immunotherapy
10.04.2017 | Society of Nuclear Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>