Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For First Time, Cochlear Implant Restores Hearing To Patient With Rare Genetic Disorder

11.06.2007
Researchers at Georgetown University Medical Center and the National Institutes of Health (NIH) have, for the first time, used a “bionic” ear to restore hearing in a patient with von Hippel-Lindau disease. They say this advance offers new hope for individuals with the rare disorder, which can produce non-malignant tumors in ears, as well as in the eyes, brain, and kidneys.

The advance was possible, researchers say, because their years of research into the disease showed that these tumors do not affect the cochlear nerve necessary for receipt of sound in the brain. The device they used is known as a cochlear implant, which stimulates the cochlear nerve with electrical impulses. It is predominately used to treat the deaf.

“Based on our understanding of how these tumors affect the inner ear, we felt that a cochlear implant could work, and it did,” said the study’s lead author, H. Jeffrey Kim, M.D., an assistant professor in the Department of Otolaryngology--Head and Neck Surgery, and a part-time investigator at the NIH, where the surgery was performed. Two years after the surgery, the implant has significantly improved the quality of life of the patient, he said.

Based on this successful surgery, which was published as a case report in the May issue of the journal Otology & Neurology, patients with von Hippel-Lindau disease with hearing loss may be now be candidates for a cochlear implant, Kim said. The disease, caused by inheritance of a mutated tumor suppressor gene, occurs in 1 out of 36,000 live births, and about 30 percent of these patients develop tumors in their ears--often in both. To date, the only option to help control these tumors is repeated surgery, which is often not successful, he said. Loss of hearing is sudden, and hearing aids don’t help, Kim said.

These tumors occur in the endolymphatic sac, part of the inner ear labyrinth of fluid passages. They are benign, but are invasive, and can cause hemorrhages that lead to tinnitus, vertigo, and hearing loss. Kim and his colleagues have been following a population of patients with the disorder and are national leaders in characterizing the disorder’s effect on the ears. They have published a series of findings in such journals as the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA).

Kim’s research also sheds light on other ear problems, including Ménière's Disease, a disorder of the inner ear that can affect hearing and balance due to pressure in the same endolymphatic sacs. “This is a much more common condition, so we hope that what we learn from von Hippel-Lindau disease may help in the treatment of hearing problems that affect many of us,” he said.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Becky Wexler | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Medical Engineering:

nachricht New imaging technique able to watch molecular dynamics of neurodegenerative diseases
14.07.2017 | The Optical Society

nachricht Quick test finds signs of sepsis in a single drop of blood
03.07.2017 | University of Illinois at Urbana-Champaign

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>