Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


For First Time, Cochlear Implant Restores Hearing To Patient With Rare Genetic Disorder

Researchers at Georgetown University Medical Center and the National Institutes of Health (NIH) have, for the first time, used a “bionic” ear to restore hearing in a patient with von Hippel-Lindau disease. They say this advance offers new hope for individuals with the rare disorder, which can produce non-malignant tumors in ears, as well as in the eyes, brain, and kidneys.

The advance was possible, researchers say, because their years of research into the disease showed that these tumors do not affect the cochlear nerve necessary for receipt of sound in the brain. The device they used is known as a cochlear implant, which stimulates the cochlear nerve with electrical impulses. It is predominately used to treat the deaf.

“Based on our understanding of how these tumors affect the inner ear, we felt that a cochlear implant could work, and it did,” said the study’s lead author, H. Jeffrey Kim, M.D., an assistant professor in the Department of Otolaryngology--Head and Neck Surgery, and a part-time investigator at the NIH, where the surgery was performed. Two years after the surgery, the implant has significantly improved the quality of life of the patient, he said.

Based on this successful surgery, which was published as a case report in the May issue of the journal Otology & Neurology, patients with von Hippel-Lindau disease with hearing loss may be now be candidates for a cochlear implant, Kim said. The disease, caused by inheritance of a mutated tumor suppressor gene, occurs in 1 out of 36,000 live births, and about 30 percent of these patients develop tumors in their ears--often in both. To date, the only option to help control these tumors is repeated surgery, which is often not successful, he said. Loss of hearing is sudden, and hearing aids don’t help, Kim said.

These tumors occur in the endolymphatic sac, part of the inner ear labyrinth of fluid passages. They are benign, but are invasive, and can cause hemorrhages that lead to tinnitus, vertigo, and hearing loss. Kim and his colleagues have been following a population of patients with the disorder and are national leaders in characterizing the disorder’s effect on the ears. They have published a series of findings in such journals as the New England Journal of Medicine (NEJM) and the Journal of the American Medical Association (JAMA).

Kim’s research also sheds light on other ear problems, including Ménière's Disease, a disorder of the inner ear that can affect hearing and balance due to pressure in the same endolymphatic sacs. “This is a much more common condition, so we hope that what we learn from von Hippel-Lindau disease may help in the treatment of hearing problems that affect many of us,” he said.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO).

Becky Wexler | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>